分享自:

2自由度并联运动机构的运动学和动力学优化

期刊:Procedia Computer ScienceDOI:10.1016/j.procs.2018.07.086

本文档属于类型a,即单篇原创研究的学术报告。以下是基于文档内容生成的学术报告:


2-DOF并联运动机构的运动学与动力学优化研究

作者及研究机构
本研究由S. Shankar Ganesh和A. B. Koteswararao共同完成,两人均来自印度维萨卡帕特南G.V.P.工程学院机械工程系。研究发表于2018年的《Procedia Computer Science》期刊,卷号为133,页码范围576-584。

研究背景
并联运动机构(Parallel Kinematic Mechanism, PKM)因其高刚度和高承载能力在工业机器人领域得到了广泛应用。然而,传统的6自由度(6-DOF)PKM存在工作空间较小和动力学复杂的问题。近年来,研究者开始关注自由度较低的PKM,如2-DOF和3-DOF PKM,这些机构通常采用单自由度关节(如旋转关节和棱柱关节)来简化设计。本研究的目标是通过优化设计,提升2-DOF PKM的运动学和动力学性能。

研究流程
研究分为以下几个主要步骤:
1. 运动学分析
- 首先,研究者对2-DOF PKM进行了逆运动学分析,以确定给定工具位置下的关节变量位置。
- 通过全局条件指数(Global Conditioning Index, GCI)评估工具平台运动的均匀性。
- 建立了PKM的刚度模型,并通过全局刚度指数(Global Stiffness Index, GSI)获得均匀刚度。

  1. 优化设计

    • 使用遗传算法(Genetic Algorithm, GA)和粒子群优化(Particle Swarm Optimization, PSO)分别基于GCI和GSI的单目标优化,获得了PKM的优化尺寸。
    • 设计变量包括固定平台和移动平台的尺寸(r和R),设计约束为关节变量的范围。
  2. 动力学分析

    • 使用拉格朗日方法(Lagrangian Method)进行逆动力学分析,计算了移动平台沿圆形轨迹运动时的总驱动力(Grand Total Actuator Force, GTAF)。
  3. 动态优化

    • 通过GA优化了2-DOF PKM的动态变量,目标是最小化驱动力。
    • 设计变量包括滑块惯性和工具平台惯性。

主要结果
1. 运动学优化结果
- 使用GA和PSO分别优化GCI和GSI,获得了PKM的最佳尺寸。例如,GCI最大值为0.6084,对应的设计变量为r = 0.9255 m和R = 0.0559 m;GSI最大值为0.3538,对应的设计变量为r = 0.8460 m和R = 0.0443 m。
- 结果表明,GCI和GSI的优化目标存在冲突,需要权衡设计。

  1. 动态优化结果
    • 通过GA优化,当权重w1 = 0.5和w2 = 0.5时,目标函数z的最小值为6.8627 N,对应的设计变量为r = 0.339 m、R = 0.052 m、ms = 0.2 kg和mp = 0.2 kg。
    • 改变权重后,目标函数z的值增加,表明w1 = 0.5和w2 = 0.5是最佳权重组合。

研究结论
本研究通过运动学、刚度和动力学分析,全面优化了2-DOF PKM的设计。研究结果表明,GCI和GSI的优化目标存在冲突,需要在实际设计中权衡。通过GA和PSO优化,研究者获得了PKM的最佳尺寸和动态性能。此外,拉格朗日方法的应用为PKM的动力学分析提供了有效工具。本研究的成果为低自由度PKM的设计和优化提供了重要参考。

研究亮点
1. 多目标优化:首次结合GCI和GSI对2-DOF PKM进行优化,揭示了优化目标之间的冲突。
2. 算法应用:使用GA和PSO进行优化,展示了两种算法在PKM设计中的有效性。
3. 动力学分析:采用拉格朗日方法进行逆动力学分析,为PKM的动力学研究提供了新思路。

研究价值
本研究不仅提升了2-DOF PKM的运动学和动力学性能,还为低自由度PKM的设计和优化提供了理论依据和实用方法。研究成果在工业机器人、智能制造等领域具有广泛的应用前景。


以上报告详细介绍了研究的背景、流程、结果和意义,为相关领域的研究者提供了全面的参考。

上述解读依据用户上传的学术文献,如有不准确或可能侵权之处请联系本站站长:admin@fmread.com