強化学習による現実世界のヒューマノイドロコモーション

強化学習による現実世界のヒューマノイドロコモーション

強化学習に基づく現実世界でのヒューマノイドロボットの歩行 背景紹介 ヒューマノイドロボットは多様な環境で自主的に作業する潜在力を持ち、工場での労働力不足を緩和し、在宅老人を支援し、新しい惑星の開拓にも寄与することが期待されています。従来のコントローラーは特定のシナリオで優れたパフォーマンスを示していますが、新しい環境への適応性には依然として課題があります。そこで、本論文では完全に学習に基づく方法を提案し、現実世界におけるヒューマノイドロボットの運動制御を実現します。 研究動機 従来の制御方法は安定したロバストな運動制御の実現において大きな進展が見られますが、その適応性と汎用性には限界があります。一方で、学習に基づく方法は多様なシミュレーションまたは実環境から学習することができ、徐々に注目を集...