少数ショット分類のための特徴揃えと均一のバランス
バランス特性の対応と均一性による少数ショット分類問題の解決 背景と動機 少数ショット学習(Few-Shot Learning, FSL)の目標は、少数の新しいカテゴリ(novel classes)サンプルの条件下で、新しいサンプルを正確に認識することです。既存の少数ショット学習方法は、主に特徴表現とその対応するラベルとの情報を最大化することで、基礎カテゴリ(base classes)から転移可能な知識を学習します。しかし、この方法は「監督の崩壊」(supervision collapse)という問題が発生する可能性があり、基礎カテゴリに対して偏りが生じることがあります。本論文では、データの内在構造を保ち、新しいカテゴリに適した一般化モデルを学習することで、これを解決する方法を提案します。本研...