エピソードメモリダブルアクタークリティックツインディレイドディープデターミニスティックポリシーグラディエント
学術的背景 深層強化学習(Deep Reinforcement Learning, DRL)は、ゲーム、ロボット、ナビゲーション、コンピュータビジョン、金融など、さまざまな分野で顕著な成果を上げています。しかし、既存のDRLアルゴリズムは、一般的にサンプル効率が低いという問題を抱えています。つまり、理想的な性能を達成するためには、大量のデータとトレーニングステップが必要です。特に連続動作タスクでは、状態-アクション空間の高次元性により、従来のDRLアルゴリズムはエピソード記憶(Episodic Memory)を効果的に活用してアクション選択を導くことが難しく、サンプル効率がさらに低下します。 エピソード記憶は、非パラメトリック制御手法の一つであり、高報酬の履歴経験を記憶することでサンプル効率...