自适应中间模态对齐学习用于可见光-红外人体重识别

自适应中间模态对齐学习用于可见光-红外人体重识别

基于可见光和红外跨模态学习的Adaptive Middle-Modality Alignment Learning方法研究 研究背景与问题 在智能监控系统的需求推动下,可见光-红外行人再识别(Visible-Infrared Person Re-identification, VIReID)正逐渐成为一个备受关注的研究领域。该任务旨在通过对不同光谱模态(如可见光与红外)的行人图像进行匹配,实现全天候行人识别。由于可见光和红外图像源自不同的光谱,存在显著的模态差异,包括光照、纹理、颜色等,这使得跨模态匹配成为一大挑战。 传统方法多通过设计复杂的生成对抗网络(Generative Adversarial Networks, GANs)或深度网络模型来缩小模态差异,但这些方法通常存在如下问题: -...