改进的3D指纹特征识别方法:基于可泛化的神经渲染

基于FingerNeRF的3D手指生物识别研究综述 背景与研究意义 随着生物识别技术的发展,三维(3D)生物识别因其更高的准确性、更强的抗伪装能力以及对拍摄角度变化的鲁棒性,逐渐成为主流研究方向之一。其中,3D手指生物识别技术因其生物特征(如指纹、指静脉、指关节等)易于获取且广泛使用,在学术界和工业界备受关注。然而,现有的3D生物识别方法普遍依赖显式的3D重建技术,这些方法在实际应用中面临两大挑战: 信息丢失:显式重建过程中不可避免地会丢失部分细节信息,直接影响后续识别任务的性能。 硬件与算法的紧耦合性:重建算法往往与特定硬件设备绑定,缺乏通用性,难以适应不同模态的数据或设备。 为解决上述问题,研究者提出了一种基于隐式神经辐射场(Neural Radiance Fields, NeRF)的F...

基于课程学习的记忆辅助知识转移框架用于弱监督在线活动检测

研究背景与研究意义 近年来,视频理解领域中弱监督在线活动检测(Weakly Supervised Online Activity Detection, WS-OAD)作为高水平视频理解的一个重要课题,得到了广泛关注。其主要目标是通过仅使用廉价的视频级标注,在流媒体视频中逐帧检测正在进行的活动。这一任务在许多实际应用场景中具有重要价值,包括自动驾驶、公共安全监控、机器人导航及增强现实等。 尽管全监督方法(Fully Supervised Methods)已在在线活动检测(OAD)中取得了显著进展,但它们严重依赖于密集的帧级注释(Frame-level Annotations),这不仅成本高昂且易受噪声影响,从而限制了模型的扩展性。弱监督设置旨在解决这一问题,但因其在线约束(Online Con...

动态注意视觉-语言Transformer网络在人员重新识别中的应用

动态注意力视觉语言Transformer网络用于行人再识别的研究报告 近年来,基于多模态的行人再识别(Person Re-Identification, ReID)技术在计算机视觉领域受到越来越多的关注。行人再识别旨在通过跨摄像机视角识别特定行人,是安全与监控应用(如寻找失踪人员、追踪犯罪分子)的关键技术。然而,多模态ReID技术融合视觉和文本信息时面临重大挑战,包括特征融合的偏差以及领域差异对模型性能的影响。 本文由Guifang Zhang、Shijun Tan、Zhe Ji和Yuming Fang等人撰写,来自江西财经大学计算与人工智能学院及纽卡斯尔大学纽卡斯尔商学院,发表于2024年《International Journal of Computer Vision》。研究提出了一种动...

StyleAdapter:一种统一风格化的图像生成模型

StyleAdapter:一种统一风格化的图像生成模型 近年来,文本到图像(Text-to-Image, T2I)生成技术和深度学习模型的快速发展,显著推动了人工智能在图像生成领域的研究进展。然而,将参考图像的特定风格融入文本生成的高质量图像中仍然是一个挑战。为了解决这一问题,Zhouxia Wang等人提出了一种名为StyleAdapter的统一风格化图像生成模型。这篇论文发表于International Journal of Computer Vision,由香港大学、腾讯ARC Lab、澳门大学以及上海人工智能实验室的研究人员共同完成。 研究背景与意义 目前主流的风格化图像生成方法包括DreamBooth和LoRA。这些方法通过对原始扩散模型进行微调,或增加额外的小型网络来适应特定风格...

基于样本相关性的深度人脸识别模型指纹检测

深度人脸识别中的模型盗用检测与保护:基于样本相关性的创新研究 背景与研究问题 近年来,深度学习技术的飞速发展显著推动了人脸识别领域的进步。然而,与此同时,商用的人脸识别模型正面临日益严峻的知识产权威胁——模型盗用攻击。模型盗用攻击允许攻击者通过对模型的黑盒或白盒访问,复制出功能等效的模型,从而规避模型所有者的检测。这种攻击不仅侵犯了模型所有者的知识产权,还可能危及商业利益和隐私安全。 为了应对这一挑战,模型指纹识别成为一种重要的盗用检测手段。传统方法主要依赖可迁移的对抗样本来生成模型指纹,但这些方法在面对对抗训练和迁移学习时表现出脆弱性。针对这一局限性,本文提出了一种基于样本相关性(Sample Correlation,SAC)的新型模型指纹识别方法,旨在提升模型盗用检测的鲁棒性和效率。 研...

AppTracker+:基于位移不确定性的多目标低帧率视频跟踪方法

低帧率多目标跟踪研究的学术报告 引言与研究背景 近年来,多目标跟踪(Multi-Object Tracking, MOT)技术在智能视频监控、自动驾驶及机器人视觉领域中得到了广泛应用。然而,传统MOT方法大多针对高帧率视频设计,在低帧率视频场景中面临显著挑战。低帧率下,相邻帧之间的目标位移增大,物体外观和可见性变化更加剧烈,这对检测结果的关联和轨迹保持提出了更高要求。由于边缘设备通常受到计算、存储和传输带宽限制,低帧率视频成为高效解决方案的重要选择,但其技术难题亟需解决。 本研究由来自浙江大学和香港科技大学的学者团队完成,发表于 *International Journal of Computer Vision*,题为“AppTracker+: Displacement Uncertaint...

Anti-Fake Vaccine:通过视觉-语义双重退化保护隐私免受换脸攻击

深度伪造与面部隐私保护:Anti-Fake Vaccine的创新研究 背景与研究动机 近年来,深度伪造(Deepfake)技术的发展对个人隐私和社会安全构成了严峻挑战。作为深度伪造技术的一个典型应用,面部替换技术广泛应用于电影制作和计算机游戏,但其潜在风险也愈发显著。面部替换可以将源人脸的身份信息嵌入目标人脸,从而生成具有欺骗性、逼真的合成图像或视频。这种技术的普及使不法分子可以轻松生成未经授权的伪造内容,对受害者的声誉和安全造成重大威胁。 现有防御技术主要分为两类:被动防御(通过检测伪造内容)和主动防御(通过添加干扰来阻止伪造)。然而,主动防御技术在面对复杂的面部替换场景时表现欠佳,尤其是由于身份信息转移涉及更复杂的语义特征提取和合成过程。针对这一问题,Jingzhi Li等人提出了名为“...

重新思考用于生物识别数据错误校正的当代深度学习技术

重新思考深度学习技术在生物特征数据纠错中的应用 背景介绍 随着信息技术的发展,生物特征数据在身份验证和安全存储中的应用愈发广泛。传统密码学通常依赖均匀分布且可精确重现的随机字符串,然而,现实中大多数数据(如指纹、虹膜扫描等生物特征)并不具备这样的属性,导致在实际应用中存在生成、存储和检索的诸多挑战。近年来,基于生物特征数据的密码学系统(biometric cryptosystems)被广泛研究,旨在利用独特的生物特征(例如指纹、虹膜等)作为生成加密密钥的来源。然而,由于生物特征数据的固有可变性以及传感器噪声等外部因素,精确恢复加密密钥变得复杂,进而对纠错机制提出了更高的要求。 在这种背景下,近年来深度学习方法凭借其在语音识别、图像处理等领域的卓越表现,被尝试应用于提升生物特征数据的纠错能力。...

日夜兼容的伪监督活动识别方法

研究亮点:基于伪监督和适应性音视频融合的低光照活动识别 学术背景 本文主要探讨在低光照环境中识别活动的挑战。现有的活动识别技术在光照充足的条件下表现优异,但面对低光照视频时却常常失效。这种局限性主要源于两个原因:一是缺乏带标注的低光照训练数据,二是低光照环境下视频的颜色对比度降低,导致视觉信息损失。此外,传统的基于视频图像增强的解决方案,尽管在一定程度上改善了图像质量,但常因引入颜色失真和视频帧不连续性等问题,对活动识别任务产生负面影响。 低光照活动识别在多个应用领域具有重要意义,包括智能家居、自主驾驶、安全监控以及野生动物观察等。因此,本文作者提出了一种新的方法,通过结合伪监督学习和自适应音视频融合技术,显著改善低光照环境下的活动识别性能。 研究来源 这项研究由University of ...

EfficientDeRain+: 基于RainMix增强的不确定性感知学习滤波的高效去雨

高效图像去雨方法:基于雨混合增强的高效深度去雨网络 背景介绍 降雨会对计算机视觉系统捕获的图像和视频质量产生显著影响,如雨滴和雨线会导致图像清晰度下降,进而影响行人检测、目标跟踪和语义分割等任务。为实现全天候视觉系统,图像去雨成为一个关键需求。然而,现有去雨方法通常基于雨模型的启发式假设,这种方法需要复杂的优化或迭代求解,从而导致计算开销大、实时性差。此外,这些假设往往无法涵盖真实雨景复杂多样的模式,制约了去雨质量。 为解决上述问题,本文提出了一种高效的图像去雨方法 EfficientDeRain+,通过将去雨问题建模为预测滤波问题,并设计了一系列创新技术,包括不确定性感知级联预测滤波、多尺度扩张滤波,以及数据增强方法 RainMix,显著提升了图像去雨的效率和质量。 论文来源 本文由来自新...