通过替代双教师自调教学实现弱监督语义图像分割
通过替代双教师自调教学实现弱监督语义图像分割 背景介绍 随着计算机视觉领域的不断发展,语义分割成为了其中一个重要而活跃的研究方向。传统的语义分割方法依赖手工标记的像素级标签,然而获取这些精确标注通常需要大量的人力和时间成本。为了解决这一问题,近年来提出了弱监督语义分割(Weakly Supervised Semantic Segmentation,WSSS),其目标是在最小化人工标注的前提下,利用弱标注信息(如图像标签、边框、涂鸦等)实现高效的语义分割。 本文研究的是基于图像级标签的弱监督语义分割方法,这是所有 WSSS 类别中最具挑战性的任务。当前方法主要依赖于图像分类模型生成伪分割掩膜(Pseudo Segmentation Masks,PSMs),但这些模型特征主要用于分类任务,导致伪...