建模分析经济决策领域中依靠机器学习建立理论所使用数据集的偏倚
背景介绍 长期以来,规范性(nomative)和描述性(descriptive)模型一直在试图解释和预测人类在面对商品或赌博等风险选择时的决策行为。最近的一项研究通过训练神经网络(Neural Networks, NNs)在一个新的大规模在线数据集choices13k上,发现了一种更准确的人类决策模型。本研究系统地分析了不同模型和数据集之间的关系,并发现了数据集偏差(dataset bias)的证据。研究表明,数据集choices13k中对随机赌博选择的偏好趋向于平衡,可能反映了增加的决策噪声。通过将结构化的决策噪声添加到使用实验室研究数据训练的神经网络中,我们构建了一个贝叶斯生成模型,并发现该模型表现优于其他除choices13k之外的所有模型。 研究来源 此项研究发表于《Nature H...