鲁棒的序列深度伪造检测
鲁棒的序列深度伪造检测 学术背景 随着深度生成模型(如GANs)的快速发展,生成逼真的人脸图像已经变得非常容易。然而,这种技术的滥用也引发了严重的安全问题,尤其是深度伪造(Deepfake)技术的滥用。深度伪造技术可以生成与真实图像几乎无法区分的伪造图像,这些图像可能被用于传播虚假信息、制造假新闻等恶意用途。为了应对这一问题,研究者们提出了多种深度伪造检测方法。然而,现有的方法主要集中在检测单步的人脸篡改操作,而随着易于使用的面部编辑应用程序的普及,人们可以通过多步操作对人脸进行序列化的篡改。这种新的威胁要求我们能够检测出一系列的面部篡改操作,这对于检测深度伪造媒体以及后续恢复原始人脸图像至关重要。 基于这一观察,本文提出了一个新的研究问题——序列深度伪造检测(Sequential Deep...