GL-MCM:全局和局部最大概念匹配的零样本分布外检测
GL-MCM: 全局与局部最大概念匹配用于零样本分布外检测 研究背景与问题提出 在现实世界中,机器学习模型的应用环境往往面临数据分布的变化,例如新类别的出现。这种现象被称为“分布外检测”(Out-of-Distribution Detection, OOD)。为了确保模型在未知数据上的可靠性,OOD 检测成为一项关键任务。然而,传统的单模态监督学习方法虽然在特定任务上表现良好,但其训练成本高昂,且难以适应多样化的应用场景。 近年来,基于 CLIP(Contrastive Language–Image Pre-training)的零样本分布外检测方法引起了广泛关注。CLIP 是一种多模态预训练模型,能够通过自然语言监督学习视觉特征。尽管现有方法如 MCM(Maximum Concept Mat...