基于标签内容描述的透明化深度图像美学评估

基于标签内容描述的透明化深度图像美学评估

基于标签内容描述的透明化深度图像美学评估 学术背景 随着社交媒体平台如Instagram和Flickr的普及,图像美学评估(Image Aesthetics Assessment, IAA)模型的需求日益增长。这些模型不仅可以帮助社交网络服务提供商优化图片排序或推荐结果,还能帮助普通用户管理相册、选择最佳照片,甚至在拍摄和编辑过程中提供指导。然而,如何构建一个稳健的IAA模型一直是一个挑战,因为图像美学的复杂性包括对象、摄影技术等多个因素。 研究动机 现有的深度学习方法虽然在IAA中表现出色,但其内部机制仍不明确。大多数研究通过隐性学习语义特征来预测图像美学,但这些方法未能直接解释这些特征具体代表了什么。本文的核心目标是创建一个更透明的IAA框架,引入可解释的语义特征,以人类可读的标签描述图...