从空间特征重要性角度提升分布外检测

从空间特征重要性视角提升分布外检测性能的研究 研究背景与问题提出 在深度学习模型的实际应用中,确保模型在面对未知类别的输入时能够可靠地拒绝预测,是保障系统安全性和鲁棒性的关键。这一需求催生了分布外检测(Out-of-Distribution Detection, OOD Detection)的研究领域。OOD检测旨在区分模型训练数据分布范围内的样本(即分布内样本,In-Distribution, ID)和超出该范围的样本(即分布外样本,Out-of-Distribution)。近年来,研究者提出了多种检测准则,如MSP(Maximum Softmax Probability)、Energy Score、GradNorm等,以构建模型的拒绝区域,并将落入该区域的样本识别为分布外样本。 然而,现...