基于服装状态感知的长期行人重识别特征正则化网络
在计算机视觉领域,行人重识别(Person Re-Identification, Re-ID)是一项重要的任务,旨在通过不同时间和地点的非重叠摄像头捕捉的图像或视频,匹配同一个人的身份。随着监控系统在公共安全中的广泛应用,Re-ID技术成为了视觉监控中的关键环节。然而,Re-ID任务面临着诸多挑战,尤其是在长期行人重识别(Long-Term Person Re-Identification, LT-ReID)中,由于时间跨度较长,行人的服装可能会发生完全、部分或不变的变化,这给传统的Re-ID方法带来了极大的困难。 传统的LT-ReID方法主要分为两类:基于生物特征的方法和基于数据适应的方法。前者依赖于生物特征(如步态、体型、面部特征等)来应对服装变化,但在复杂背景或数据不完整的情况下表现不...