基于策略共识的分布式确定性多智能体强化学习方法研究
基于策略共识的分布式确定性多智能体强化学习研究报告 强化学习(Reinforcement Learning, RL)近年来在诸多领域取得了显著突破,包括机器人学、智能电网和自动驾驶等。然而,在实际场景中,常常涉及到多智能体(Multi-Agent Reinforcement Learning, MARL)的协作学习问题。这类问题的核心挑战在于设计高效的多智能体协作强化学习算法,尤其是在受制于通信能力限制或隐私保护的情况下。目前,多数的MARL算法依赖一种被广泛采用的集中化训练-分布式执行(Centralized Training with Decentralized Execution, CTDE)范式。该范式虽然可以有效解决环境的非平稳性问题,但由于其重通信和集中化处理的本质,使其在实际部...