利用通用代理模型进行样本选择来应对标签噪声
学术背景与问题提出 随着深度神经网络(Deep Neural Networks, DNNs)的快速发展,视觉智能系统在图像分类、目标检测、视频理解等任务中取得了显著进展。然而,这些突破依赖于高质量标注数据的收集,而标注过程通常耗时且昂贵。为了应对这一问题,研究人员开始利用大规模的网络数据进行训练,但这些数据往往带有噪声标签(label noise),这会影响深度神经网络的性能。噪声标签的存在会导致训练数据和测试数据分布不一致,从而影响模型在干净测试数据上的泛化能力。 为了解决这一问题,样本选择(sample selection)成为一种有效的方法。其核心思想是通过某种标准从所有训练样本中分离出干净的样本。以往的方法主要依赖于“小损失准则”(small loss criterion),即认为损...