深層再帰強化学習とフェデレーションラーニング補助を活用した産業用IoTトラフィック侵入検出手法

深層循環型強化学習と連合学習を用いた産業IoTトラフィックの侵入検知手法 学術背景 産業用IoT(Industrial Internet of Things, IIoT)の急速な発展は、スマート工場や産業システムに大きな変革をもたらしました。IIoTは、インターネットを介してさまざまな産業デバイスを接続し、データ交換、遠隔制御、インテリジェントな意思決定を実現しました。しかし、このシームレスな接続性と膨大なデバイスネットワークは、産業システムがより複雑で多様なサイバーセキュリティリスクに直面する結果となりました。現実のIIoTシナリオにおいて、ネットワーク攻撃はデータ漏洩、データ操作、サービス拒否(denial of service, DoS)、および工場の生産中断などの深刻な影響を引き起こ...