DataLadを用いた研究データ管理の教育:数年にわたる複数分野の取り組み

科学研究データ管理教育の多年にわたる多分野の取り組み 研究背景 現代神経科学の発展に伴い、研究データ管理(Research Data Management, RDM)は科学者にとって不可欠なスキルとなっています。しかし、研究データ管理の重要性にもかかわらず、これらの技術スキルは分野特化の大学院教育においてしばしば無視されがちです。そのため、ますます多くのコミュニティは、組織されたトレーニングの機会や自己学習材料を提供し、初期の研究者がこの知識とスキルを習得するのを支援しています。 マサチューセッツ工科大学(MIT)の「the missing semester of your cs education」は、この教育不足の一例です。さらに、現代のコンピュータとアプリケーションの高可用性は、ユーザ...

直接変調されたワット級フォトニッククリスタル面発光レーザーによる高速高出力自由空間光通信

直接変調されたワット級フォトニッククリスタル面発光レーザーによる高速高出力自由空間光通信

高速大功率自由空间光通信:瓦特级光子晶体表面发射激光器の直接変調 背景紹介 半導体レーザーは、光通信の重要な光源として、小型、低コスト、長寿命、高効率などの特徴から広く応用されています。例えば、垂直共振器面発光レーザー(VCSELs)は、その低消費電力と広帯域直接変調能力のため、データセンターの短距離光インターコネクションに適しています。一方、分布帰還(DFB)レーザーはその単一モード動作特性により、長距離光ファイバ通信で広く用いられています。近年、半導体レーザーを利用した自由空間光通信(FSO)が長距離で高速に伝送でき、光ファイバを必要としないため、注目を集めています。FSO技術は、5Gと未来の6G通信におけるバックホールおよびフロントホールネットワーク、衛星間通信、深宇宙通信などに潜在的...

光周波数コムとプログラム可能な光メモリを用いたハイパースペクトル記憶計算

ハイパースペクトルストレージの内計算と光周波数コームおよびプログラム可能な光ストレージの応用 序論 近年、機械学習の飛躍的進展によって、医療、金融、小売、車両製造業など多くの業界で革命的な発展が促進されています。これらの変革は、広範囲にわたる行列-ベクトル積(mvm)の需要を急増させ、大規模最適化や深層学習アルゴリズムにおいて極めて重要です。しかし、この増大する計算需要は、記憶装置と処理ユニットを分離する従来のフォン・ノイマン型デジタル電子計算機のアーキテクチャに挑戦を与え、「フォン・ノイマンボトルネック」として知られる、記憶装置とプロセッサ間のデータ転送速度の制限によって全体のシステム性能が制約されています。この性能ボトルネックを解決するために、保存内計算が革新的な解決策として浮上しており...

炎症性筋疾患の細胞タイプマッピングが封入体筋炎における選択的筋線維脆弱性を強調する

炎性筋症における筋繊維タイプの異質性表現と封入体筋炎の選択的感受性 年齢とともに、炎性筋症の発症率が徐々に増加しており、その中でも封入体筋炎(IBM)は最も一般的なタイプであり、現在有効な治療法は存在しません。他の炎性筋症とは異なり、IBMは慢性的な経過をたどり、炎症と変性病理の特性を有します。さらに複雑なのは、IBMの進行を引き起こす要因と分子的な駆動要因が未だ明確でないことです。この疾患を深く研究するために、研究者たちは単核RNAシーケンシングと空間トランスクリプトミクスを用いて、患者の筋肉生検サンプルの細胞タイプ特異的な駆動要因のマッピングを行い、IBM筋肉と免疫介在性壊死性筋症(IMNM)および非炎症性の骨格筋サンプルを比較しました。 研究背景と目的 IBMは高齢者に最も多い炎性筋症...

k-emophone: 実験中の感情、ストレス、および注意ラベルを含むモバイルおよびウェアラブルデータセット

科学データレポート | K-emophone: 場所特定の感情、ストレス、注意力ラベルを含むモバイルおよびウェアラブルデータセット 背景紹介 低コストのモバイルおよびウェアラブルセンサーの普及に伴い、多くの研究がこれらのデバイスを利用して人間の精神的健康、生産性、行動パターンを追跡および分析しています。しかし、これまでのところ、実験室環境で収集されたデータセットは発展してきた一方で、実世界のシナリオで収集された感情、ストレス、注意力などのラベルを含むデータセットが不足しており、感情計算(Affective Computing)および人間とコンピュータのインタラクション(Human-computer Interaction)分野の研究進展を制限しています。 研究の出所 本研究は、Soowon ...

深層学習に基づく運動イメージEEG分類、皮質源画像の機能的接続を利用する

深層学習に基づく運動想像EEG分類における皮質源イメージングの機能的結合の活用 研究背景と動機 脳-機械インターフェース(BCI)は、関連する神経経路や筋肉に依存せずに脳活動情報を直接デコードし、外部デバイスとの通信や制御を実現するシステムです。BCIシステムにおいて、よく使われる信号には脳波(EEG)、脳磁図(MEG)、および機能的磁気共鳴画像(fMRI)が含まれます。その中でも、EEGは非侵襲、実施の容易さ、低コスト、倫理的チャレンジがないなどの利点から最も一般的に使用されます。 運動想像(Motor Imagery, MI)はBCIの重要なパラダイムで、刺激条件がない場合でも、運動想像タスク中に運動想像EEG信号(MI-EEG)が自発的に生成されます。MI-EEG信号には、運動意図期間...

創造的過程における学生の芸術的および工学的思考のEEG研究

創造的過程における芸術と工学思考の脳電活動に関する研究 背景と研究動機 創造性は、新奇で価値のあるものを想像する能力として広く認識されています。研究者たちは、成長型思考と固定型思考という2つの創造的思考方法が存在すると発見しました。成長型の創造的思考は、時間と実践によってスキルを向上させることができる一方で、固定型の創造的思考は創造スキルが変えられないと考えられています。教育は創造性の育成において極めて重要な役割を果たし、芸術と工学の分野の学生が創造的なタスクにおいて明確な違いを示すことも研究で明らかになっています。 研究出典 この研究論文「An EEG study on artistic and engineering mindsets in students in creative pr...

動的表現のための時間的集約と伝播のグラフニューラルネットワーク

動的グラフ表現の時間集約と伝搬グラフニューラルネットワーク 背景紹介 動的グラフ(temporal graph)は、連続した時間の中でノード間に動的なインタラクションが存在するグラフ構造であり、グラフのトポロジー構造は時間の経過とともに変化し続けます。このような動的な変化はノードが異なる時間点で異なる嗜好を示すことを可能にし、ユーザーの嗜好を捉えて異常行動を検出する上で非常に重要です。しかし、既存の研究は通常、限られた近隣ノード生成による動的表現を採用しており、これが性能の低下と高いレイテンシーオンライン推論の問題を引き起こしています。これらの課題に対処するために、本論文は新しい時間グラフ畳み込み法である時間集約と伝搬グラフニューラルネットワーク(Temporal Aggregation a...

知識グラフ強化推薦のためのグラフベースの非サンプリング

知識グラフ強化推薦のためのグラフベースの非サンプリング

グラフに基づいたサンプリングなしの知識グラフ強化推薦 近年、知識グラフ(Knowledge Graph, KG)を強化した推薦システムは、コールドスタート問題や推薦システムの可解釈性を解決するために、多くの研究者の関心を集めています。既存の推薦システムは、購入履歴などの暗黙のフィードバックに焦点を当てることが多く、負のフィードバックが不足しています。大部分のシステムは暗黙のフィードバックデータを処理するために負のサンプリング戦略を採用していますが、これでは潜在的な正のユーザー-アイテムの相互作用が見過ごされる可能性があります。他の研究ではサンプリングなし戦略を採用し、観察されていない全ての相互作用を負のサンプルと見なして、各負のサンプルに正のサンプルの確率を示す重みを割り当てています。しかし...

拡散に基づく深層学習法による超微細構造イメージングと体積電子顕微鏡の拡張

拡散に基づく深層学習法による超微細構造イメージングと体積電子顕微鏡の拡張

拡散モデルベースの深層学習アルゴリズムを用いた超解像度イメージングと体積電子顕微鏡の強化 背景紹介 電子顕微鏡(Electron Microscopy、略してEM)は高解像度のイメージングツールとして、細胞生物学の重大な突破口を開いた。従来のEM技術は主に2次元のイメージングに使用されていたが、ナノスケールの複雑な細胞構造を明らかにしてきた一方で、3次元(3D)構造の研究には一定の限界があった。より高度な技術である体積電子顕微鏡(Volume Electron Microscopy、略してVEM)は、連続切片と断層走査技術(透過電子顕微鏡TEMやスキャニング電子顕微鏡SEMなど)を用いて、細胞や組織の3Dイメージングを実現し、細胞、組織、さらには小型のモデル生物のナノスケールの3D構造を抽出...