偽ニュースの雲における希望:大型言語モデルは誤情報の検出に役立つか?

大規模言語モデルは虚偽情報にどう対応するのか?—LLMsを基盤とした深掘り研究 現代の情報が急速に拡散するデジタル時代において、虚偽情報(misinformation)やフェイクニュース(fake news)の拡散は、社会的な重大課題となっています。インターネットやソーシャルメディアの普及により、情報共有のハードルが大幅に下がり、誰でも未検証のままコンテンツを拡散できるようになりました。その一方で、ソーシャルプラットフォームのアルゴリズムは、議論を呼ぶ内容や感情を強く揺さぶる内容を優先的に表示する傾向があり、誤解を招く情報の拡散を加速させています。さらに、生成型人工知能(generative artificial intelligence)、特に大規模言語モデル(Large Language...

大規模言語モデルと知識グラフの統合:ロードマップ

統一大言語モデルと知識グラフ 背景 近年、自然言語処理と人工知能の分野には多くの研究成果が現れており、その中でも大言語モデル(Large Language Models, LLMs)として知られるChatGPTやGPT-4が優れた成果を示しています。しかし、これらのモデルは優れた一般化能力を持ちながらも、そのブラックボックス性から事実知識を効果的に捕捉しアクセスすることが困難とされ批判を受けることも多いです。一方、知識グラフ(Knowledge Graphs, KGs)として知られるWikipediaやHuapuは、構造化形式で大量の事実知識を保存していますが、知識グラフの構築と進化のプロセスは非常に複雑です。そこで、研究者たちは大言語モデルと知識グラフを組み合わせ、それぞれの長所を生かして...