環境の不確実性を考慮した堅牢な多目的強化学習

背景紹介 近年、強化学習(Reinforcement Learning, RL)はさまざまな複雑なタスクの解決においてその有効性を示してきた。しかし、多くの現実世界の意思決定と制御の問題は、複数の相互に対立する目標を含む。これらの目標の相対的な重要性(選好)は、異なる状況でバランスを取る必要がある。パレート最適解(Pareto optimal)の解決策は理想的とされるが、環境の不確実性(例えば、環境の変化や観察ノイズ)は、エージェントが次善の戦略を取ることを引き起こす可能性がある。 この問題に対処するために、Xiangkun He、Jianye Haoなどは、《Robust Multiobjective Reinforcement Learning Considering Environme...