進化的多目的最適化による移民再定住

多目的進化的最適化による移民定住問題解決の新たなフレームワークに関する研究報告 グローバル化の進展が加速し、社会経済的背景が変化する中、移民(migrants)現象は無視できない世界的なトレンドとなっています。人道的支援の観点や、グローバル経済の持続可能な発展の観点から、移民を効果的に管理し定住させることは、複雑で重要な課題となっています。統計データによると、2019年現在、国際移民の総数は2.72億人に達しており、従来の予測をはるかに上回る成長を示しています。そして、この現象は将来も続くとされています。しかし一方で、移民定住のプロセスには多くの課題が伴います。例えば、どのように移民の雇用率を向上させるのか、またどのように適切な定住地に移民を合理的に配置するのかといった問題です。これらの問い...

バイアス付き目標を備えた多目的動的柔軟ジョブショップスケジューリングのマルチタスク遺伝プログラミングによる実現

複数目的動的柔軟ジョブショップスケジューリングにおける画期的研究:多タスク学習による目標偏向の最適化を実現した革新的手法 背景紹介 動的柔軟ジョブショップスケジューリング(Dynamic Flexible Job Shop Scheduling, DFJSS)は重要な組合せ最適化問題であり、製造や倉庫管理などの生産プロセスに幅広く応用されています。例えば、製造プロセスのタスク割り当てや倉庫の注文ピッキング作業の最適化に利用されています。この問題の中心点は、動的な環境下で複数の機械やジョブに対する柔軟なタスク割り当てと操作順序の決定を行い、特定の効率指標を最大化したり時間コストを最小化することにあります。しかし、この問題の複雑さは非常に高く、特にタスクが動的に到着したり機械が故障した場合、従来...

多目的進化フレームワークによる高次有向コミュニティ検出

高階指向性コミュニティ検出における多目的進化フレームワーク 背景と研究の動機 複雑ネットワーク科学の分野において、コミュニティ構造はネットワーク研究の重要な特性の一つです。この構造は、ソーシャルネットワーク、生物学的ネットワーク、交通ネットワークなど、多くの実世界のネットワークに広く存在します。コミュニティ検出技術は、ネットワークのトポロジー属性と機能特性を効果的に明らかにすることで、ネットワーク行動のメカニズムの理解を深めることを可能にします。 現在、多くの従来型コミュニティ検出手法は、低階のノードおよびエッジ接続パターンに依存しています。しかし、研究によりネットワーク内の高階特性、すなわち「モチーフ」(Motif)と呼ばれる繰り返し現れる小さな部分構造が、ネットワークのトポロジー形態と機...

水平フェデレーテッドラーニングのためのコスト効率の良い特徴選択

水平フェデレーション学習における効果的な特徴選択の新しいアプローチ 近年、フェデレーション学習(Federated Learning, FL)はデータプライバシー保護型の分散機械学習手法として注目を集めています。複数のクライアント間でモデルを協調的に学習する際に情報共有が必要とされる一方で、クライアントはローカルデータを一切共有しないため、全体モデルの性能を保証する新しいアプローチが求められています。特に、水平フェデレーション学習(Horizontal Federated Learning, HFL)では、全てのクライアントが同じ特徴空間を共有しますが、個々のサンプルデータは異なるため、大量の冗長特徴や次元性の呪い(Curse of Dimensionality)によりモデルの性能と学習効率...

環境の不確実性を考慮した堅牢な多目的強化学習

背景紹介 近年、強化学習(Reinforcement Learning, RL)はさまざまな複雑なタスクの解決においてその有効性を示してきた。しかし、多くの現実世界の意思決定と制御の問題は、複数の相互に対立する目標を含む。これらの目標の相対的な重要性(選好)は、異なる状況でバランスを取る必要がある。パレート最適解(Pareto optimal)の解決策は理想的とされるが、環境の不確実性(例えば、環境の変化や観察ノイズ)は、エージェントが次善の戦略を取ることを引き起こす可能性がある。 この問題に対処するために、Xiangkun He、Jianye Haoなどは、《Robust Multiobjective Reinforcement Learning Considering Environme...