多目的進化フレームワークによる高次有向コミュニティ検出

高階指向性コミュニティ検出における多目的進化フレームワーク 背景と研究の動機 複雑ネットワーク科学の分野において、コミュニティ構造はネットワーク研究の重要な特性の一つです。この構造は、ソーシャルネットワーク、生物学的ネットワーク、交通ネットワークなど、多くの実世界のネットワークに広く存在します。コミュニティ検出技術は、ネットワークのトポロジー属性と機能特性を効果的に明らかにすることで、ネットワーク行動のメカニズムの理解を深めることを可能にします。 現在、多くの従来型コミュニティ検出手法は、低階のノードおよびエッジ接続パターンに依存しています。しかし、研究によりネットワーク内の高階特性、すなわち「モチーフ」(Motif)と呼ばれる繰り返し現れる小さな部分構造が、ネットワークのトポロジー形態と機...

水平フェデレーテッドラーニングのためのコスト効率の良い特徴選択

水平フェデレーション学習における効果的な特徴選択の新しいアプローチ 近年、フェデレーション学習(Federated Learning, FL)はデータプライバシー保護型の分散機械学習手法として注目を集めています。複数のクライアント間でモデルを協調的に学習する際に情報共有が必要とされる一方で、クライアントはローカルデータを一切共有しないため、全体モデルの性能を保証する新しいアプローチが求められています。特に、水平フェデレーション学習(Horizontal Federated Learning, HFL)では、全てのクライアントが同じ特徴空間を共有しますが、個々のサンプルデータは異なるため、大量の冗長特徴や次元性の呪い(Curse of Dimensionality)によりモデルの性能と学習効率...

環境の不確実性を考慮した堅牢な多目的強化学習

背景紹介 近年、強化学習(Reinforcement Learning, RL)はさまざまな複雑なタスクの解決においてその有効性を示してきた。しかし、多くの現実世界の意思決定と制御の問題は、複数の相互に対立する目標を含む。これらの目標の相対的な重要性(選好)は、異なる状況でバランスを取る必要がある。パレート最適解(Pareto optimal)の解決策は理想的とされるが、環境の不確実性(例えば、環境の変化や観察ノイズ)は、エージェントが次善の戦略を取ることを引き起こす可能性がある。 この問題に対処するために、Xiangkun He、Jianye Haoなどは、《Robust Multiobjective Reinforcement Learning Considering Environme...