レジスティブメモリベースのゼロショット液体状態機械による多モーダルイベントデータ学習
新型抵抗変化メモリ駆動のゼロショット多モーダルイベント学習システム:ハードウェア-ソフトウェア協調設計の研究報告 学術的背景 人間の脳は複雑なスパイキングニューラルネットワーク(Spiking Neural Network, SNN)であり、極めて低い消費電力で多モーダル信号においてゼロショット学習(Zero-shot Learning)を行う能力を持っています。これは既存の知識を一般化して新しいタスクに対処する能力です。しかし、この能力をニューロモルフィックハードウェアに複製するには、ハードウェアとソフトウェアの両面で課題があります。ハードウェア面では、ムーアの法則の減速とフォン・ノイマンボトルネック(von Neumann bottleneck)が従来のデジタルコンピュータの効率を制限し...