MEGおよびEEGの隠れガウス図形スペクトルモデルを用いた振動脳ネットワークの識別
研究背景と研究目的 神経科学の分野が発展するにつれて、機能ネットワークに関連する間接観察プロセスの識別が重要な研究方向となりました。研究者は電生理信号(例えば脳波EEGや脳磁図MEG)を通じてこれらの機能ネットワークの活動を推定しようとしています。しかし、このプロセスは観測データから潜在的な脳活動を推測する逆問題を伴い、研究に巨大な挑戦をもたらしています。 本稿では、著者らはこの課題に対する新しい方法を提案しています。彼らは従来の方法が機能的接続性を推定する際に顕著な誤差を持つことを指摘しており、それは主に機能ネットワークモデルの不適合によるものです。これらの誤差は機能的接続性の正確性に大きく影響し、脳機能の理解を制限します。この問題を解決するために、著者らはベイズ理論に基づく隠れガウススペ...