境界回帰と構造的再パラメータ化に基づく核インスタンスセグメンテーションモデルRepsNet

境界回帰と構造的再パラメータ化に基づく核インスタンスセグメンテーションモデルRepsNet

境界回帰と構造再パラメータ化に基づく核インスタンスセグメンテーションモデルRepsNet 学術的背景 病理診断は腫瘍診断のゴールドスタンダードであり、核インスタンスセグメンテーションはデジタル病理分析と病理診断における重要なステップです。しかし、モデルの計算効率と重複ターゲットの処理は、現在の研究における主要な課題です。これらの問題を解決するために、本論文では、核境界回帰と構造再パラメータ化に基づくニューラルネットワークモデルRepsNetを提案し、H&E染色された組織病理学画像における核のセグメンテーションと分類を行います。 核の分布と形態的特徴(密度、核質比、平均サイズ、多形性など)は、がんのグレード評価だけでなく、治療効果の予測にも有用です。しかし、病理画像は通常、核の広範な接着、多様...