限られたデータでの画像合成:調査と分類法

限られたデータにおける画像合成に関する調査 研究背景と問題提起 近年、ディープ生成モデル(Deep Generative Models)は、特に画像やビデオ生成、音声合成などのインテリジェントな作成タスクにおいて、前例のない進展を遂げてきました。しかし、これらのモデルの成功は大量のトレーニングデータと計算資源に依存しています。トレーニングデータが限られている場合、生成モデルは過学習(Overfitting)や記憶化(Memorization)の問題を引き起こしやすく、生成サンプルの品質と多様性が大幅に低下します。この制約は、医療画像生成、産業における欠陥検出、芸術作品制作など、多くの実用的なアプリケーションにとって課題となっています。 これらの問題に対処するために、研究者たちは限られたデータ...