多电极阵列加速模拟的稀疏与低秩矩阵技术

加速多电极阵列模拟的稀疏与低秩矩阵技术 学术背景 多电极阵列(multi-electrode arrays, MEAs)在神经刺激领域具有重要应用,尤其是在视网膜假体(retinal prostheses)等神经假体中。这些设备通过电刺激神经元来恢复视力或治疗神经退行性疾病。然而,模拟这些设备的电场分布和电流动态行为具有极高的计算复杂性。传统的模拟方法需要处理数百万个相互连接的电阻(resistor mesh),导致计算时间和内存需求急剧增加,尤其是当电极数量增多、像素尺寸减小时,模拟变得几乎不可行。 为了解决这一问题,本文提出了一种基于稀疏矩阵(sparse matrix)和低秩补偿(low-rank compensation)的加速模拟方法,旨在显著减少计算复杂度,同时保持高精度。该研究...