多领域适应中的主动动态加权
背景介绍 多源无监督域适应(Multi-source Unsupervised Domain Adaptation, MUDA)旨在从多个已标记的源域向无标记的目标域转移知识。但是,现有的方法在处理源域和目标域的分布差异时,往往只是简单地寻求不同领域之间分布的混合或在决策过程中结合多个单源模型进行加权融合,未深入考察不同源域和目标域之间的全局和局部特征分布的差异。因此,为解决这一问题,该研究提出了一种全新的多源域适应的主动动态加权(Active Dynamic Weighting, ADW)方法。 论文来源 本文的研究工作由西安理工大学的刘龙、周博、赵志鹏和刘泽宁组成的团队完成,于2024年5月20日正式在线发表在《Neural Networks》杂志上,文章编号为177(2024)1063...