基于图论主动学习的最优疾病监测研究

基于图论的主动学习疾病监测优化策略 学术背景 随着全球化的加速,传染病的传播速度与范围显著增加,如何有效监测和控制传染病的传播成为公共卫生领域的重要课题。传统的疾病监测方法通常依赖于大规模的检测和隔离措施,然而,资源有限的情况下,如何优化检测资源的分配以最大化信息获取,成为了政策制定者面临的挑战。尤其是在资源匮乏的地区,检测资源的分配不均可能导致疫情的持续蔓延。因此,开发一种能够在有限资源下最大化监测效果的策略显得尤为重要。 本文的研究旨在通过图结构(graph-based)和主动学习(active learning)的方法,优化疾病监测中的检测资源分配。具体来说,研究者将疾病传播建模为一个无向无权图(undirected and unweighted graph),其中节点代表地理位置,边...

多领域适应中的主动动态加权

背景介绍 多源无监督域适应(Multi-source Unsupervised Domain Adaptation, MUDA)旨在从多个已标记的源域向无标记的目标域转移知识。但是,现有的方法在处理源域和目标域的分布差异时,往往只是简单地寻求不同领域之间分布的混合或在决策过程中结合多个单源模型进行加权融合,未深入考察不同源域和目标域之间的全局和局部特征分布的差异。因此,为解决这一问题,该研究提出了一种全新的多源域适应的主动动态加权(Active Dynamic Weighting, ADW)方法。 论文来源 本文的研究工作由西安理工大学的刘龙、周博、赵志鹏和刘泽宁组成的团队完成,于2024年5月20日正式在线发表在《Neural Networks》杂志上,文章编号为177(2024)1063...