基于自校正多标签学习的质粒宿主范围预测模型

质粒(plasmid)是细菌中独立于染色体DNA的小型环状双链DNA分子,它们通过水平基因转移(horizontal gene transfer)帮助宿主细菌获得抗生素抗性、金属抗性等有益特性。一些质粒能够在多种微生物中转移、复制或持续存在,这类质粒被称为广宿主范围质粒(broad-host-range plasmids, BHR plasmids)。准确预测BHR质粒的宿主范围对于理解质粒如何促进细菌进化、传播抗性基因以及开发重组载体具有重要意义。然而,目前缺乏提供BHR质粒详细宿主范围标签的数据库,这使得基于机器学习模型的宿主范围预测面临挑战。由于缺乏足够的标注样本,模型难以提取有效的特征表示,导致预测精度受限。 为了解决这一问题,香港城市大学电气工程系的Wei Zou、Yongxin ...

基于标签特定特征校准的部分多标签学习方法

部分多标签学习的前沿研究:一种基于标签特异性特征校正的新方法 近年来,部分多标签学习(Partial Multi-Label Learning,PML)逐渐成为机器学习领域的研究热点。随着众包平台的普及,数据标注成本得到显著降低,但随之而来的问题是标注质量的下降——即候选标签集中不可避免地存在一些无关的标签。这些标签噪声不仅增加了学习任务的难度,还可能对模型性能产生误导性影响。因此,研究如何从含噪数据中有效学习,成为目前学术界亟待解决的重要课题。本篇学术报道将聚焦一项在未来学术领域具有重要参考意义的研究,该研究提出了一种名为PASE(Partial Multi-Label Learning via Label-Specific Feature Corrections,基于标签特异性特征校正的...