基于知识图谱的社交增强可解释推荐

基于知识图谱的社交增强可解释推荐系统 引言 随着互联网世界信息量的不断增加,用户和商品的相关信息也迅速扩展,导致信息过载问题日益严重。推荐系统通过为用户推荐少量符合其偏好的商品,能够有效缓解这一问题,不仅能帮助用户迅速获取感兴趣的内容,还能帮助企业实现精准营销,提升客户忠诚度。在电子商务、社交媒体和搜索引擎等多种平台上,推荐系统扮演着越来越重要的角色。 推荐系统的性能高度依赖于推荐技术。早期的协同过滤(Collaborative Filtering, CF)方法通过推荐与用户曾经互动过的物品相似的其他物品来实现推荐。然而,当用户与物品之间的互动稀疏时,CF方法效果不佳。为了解决这一限制,各种辅助信息如物品属性、用户信息和上下文被整合到模型中。尤其是,当侧信息被转化为特征向量并与用户和物品ID...

知识增强图神经网络用于可解释性推荐

知识增强图神经网络用于可解释性推荐

知识增强图神经网络用于可解释推荐 导言 随着线上信息爆炸式的增长,推荐系统在解决信息超载问题方面发挥着重要作用。传统推荐系统通常依赖协同过滤(Collaborative Filtering,简称CF)方法,这些方法依据用户的历史记录生成推荐。CF方法主要分为记忆型和模型型技术。记忆型方法包括基于用户和基于项目的CF,而模型型方法通过学习模型,例如矩阵分解来进行推荐。近年来,深度学习技术在信息检索和推荐系统研究中展现出了极高的有效性。许多基于深度学习的推荐方法取得了高推荐性能。然而,尽管这些方法在推荐准确性上表现出色,它们缺乏决策过程的可解释性和透明性。为了提升推荐系统的透明性和用户满意度,解释性推荐的研究逐渐受到关注。解释性推荐不仅使推荐更加透明和可解释,还提升了系统的可信度和用户满意度。 ...

基于图的非抽样策略增强知识图谱推荐系统

基于图的非抽样策略增强知识图谱推荐系统

基于图的无采样知识图谱增强推荐 近年来,知识图谱(Knowledge Graph, KG)增强推荐系统,旨在解决冷启动问题和推荐系统的可解释性,已经吸引了大量的研究兴趣。现有的推荐系统通常侧重于隐式反馈,如购买历史记录,但缺乏负反馈。大多数系统采用负采样策略处理隐式反馈数据,这可能忽略了潜在的正用户-项目交互。而其他一些工作则采用无采样策略,将所有未观察到的交互视为负样本,并为每个负样本分配权重,以表示该样本为正样本的概率。然而,这些方法使用简单直观的权重分配策略,不能捕捉所有交互数据中的潜在关系。 研究背景与动机 随着互联网的快速发展,信息超载的问题日益严重。为了提高用户的搜索体验并增加产品供应商的收入,推荐系统应运而生,并在电子商务、社交网络等多个应用中取得了巨大成功。近年来,作为内容信...

推荐系统中基于知识图谱的上下文图注意力网络

基于知识图谱的推荐系统:Contextualized Graph Attention Network 近年来,随着在线信息和内容的爆炸式增长,推荐系统在电子商务网站和社交媒体平台等各种场景中变得越来越重要。这些系统通常旨在为用户提供她可能感兴趣的项目列表。然而,传统的基于用户行为数据的方法(例如协同过滤、深度学习)面临着数据稀疏性和冷启动问题。为了解决这些问题,研究者尝试将各种辅助信息 (side information) 融入到推荐系统中,其中包含用户的社交网络、评论文本等。 研究背景 在这些辅助信息中,项目知识图谱(Knowledge Graph, KG)包含丰富的项目间关系,并已被证明可以显著提高推荐系统的性能。知识图谱本质上是一个异构网络,其中节点代表实体,边代表关系。然而,如何将这...