基于轻量点云网络的面部3D区域结构运动表示用于微表情识别
基于轻量级点云网络的3D区域结构运动表示在微表情识别中的应用 学术背景 微表情(Micro-expressions, MEs)是人类情感表达中的一种短暂且微妙的面部表情,通常持续1/25到1/5秒。由于其自发性、快速性和难以控制的特点,微表情往往能够揭示个体的真实情感,因此在人机交互(Human-Computer Interaction, HCI)、心理学、刑事分析、商务谈判等领域具有重要应用价值。然而,微表情的低强度和短暂性使其识别成为一项极具挑战性的任务。传统的微表情识别方法主要依赖于2D RGB图像中的运动特征提取,忽略了面部结构及其运动在情感传达中的关键作用。为了克服这一局限,本文提出了一种创新的3D面部运动表示方法,结合了3D面部结构、区域化的RGB和结构运动特征,旨在更准确地捕捉...