基于深度递归强化学习和联邦学习的工业物联网流量入侵检测方法

基于深度循环强化学习和联邦学习的工业物联网流量入侵检测方法 学术背景 工业物联网(Industrial Internet of Things, IIoT)的快速发展带来了智能工业系统的巨大变革,IIoT通过互联网连接各种工业设备,实现了设备间的数据交换、远程控制以及智能决策。然而,这种无缝连接和庞大的设备网络也使得工业系统面临日益复杂和多样化的网络安全威胁。在实际IIoT场景中,网络攻击可能导致数据泄漏、数据操纵、拒绝服务(denial of service, DoS)、以及工厂生产中断等严重后果。传统的入侵检测方法虽然对部分攻击类型表现出了一定的检测能力,但由于其大多采用传统的机器学习模型在集中服务器上训练,无法很好地处理分布式设备所带来的隐私、能耗以及异质性数据分布问题。 为了应对这些挑...

FedRVR :基于关系引导的多功能正则化的联邦半监督学习

学术背景与问题提出 随着数据隐私问题的日益突出,联邦学习(Federated Learning, FL)作为一种去中心化的机器学习范式,逐渐成为研究热点。联邦学习允许多个客户端在不共享数据的情况下协作训练一个全局模型,从而保护数据隐私。然而,现有的联邦学习方法通常假设每个客户端的数据都是完全标注的,这在实际应用中往往是不现实的,尤其是在标注能力有限的情况下。为了解决这一问题,联邦半监督学习(Federated Semi-Supervised Learning, FSSL)应运而生。FSSL 旨在利用大量未标注的数据进行知识挖掘,从而在保护隐私的同时提升模型性能。 然而,现有的 FSSL 方法主要依赖于数据增强来保持局部模型与全局模型之间的一致性,这导致了分类器的偏差,并且在未标注客户端数据分...