FedRVR :基于关系引导的多功能正则化的联邦半监督学习

学术背景与问题提出 随着数据隐私问题的日益突出,联邦学习(Federated Learning, FL)作为一种去中心化的机器学习范式,逐渐成为研究热点。联邦学习允许多个客户端在不共享数据的情况下协作训练一个全局模型,从而保护数据隐私。然而,现有的联邦学习方法通常假设每个客户端的数据都是完全标注的,这在实际应用中往往是不现实的,尤其是在标注能力有限的情况下。为了解决这一问题,联邦半监督学习(Federated Semi-Supervised Learning, FSSL)应运而生。FSSL 旨在利用大量未标注的数据进行知识挖掘,从而在保护隐私的同时提升模型性能。 然而,现有的 FSSL 方法主要依赖于数据增强来保持局部模型与全局模型之间的一致性,这导致了分类器的偏差,并且在未标注客户端数据分...

PICK:基于预测与掩码的半监督医学图像分割方法

PICK模型在半监督医学图像分割中的应用 学术背景 医学图像分割在临床实践中具有重要意义,能够为医生提供关于器官或肿瘤的体积、位置和形状等关键信息。近年来,基于深度学习的模型在医学图像分割任务中表现出色,但这些模型通常需要大量的标注数据。然而,医学图像的标注需要专业的临床医生,获取这些标注数据既耗时又昂贵。因此,如何在有限的标注数据下提高模型性能成为了一个重要的研究问题。 半监督学习(Semi-Supervised Learning, SSL)通过同时利用有限的标注数据和大量的未标注数据,成为解决这一问题的有效方法。现有的SSL方法主要分为两类:伪标签(Pseudo-labeling)和基于一致性的协同训练(Consistency-based Co-training)。然而,这些方法在处理未...

在野外使用SAM学习检测新物种

研究论文报告:基于 SAM 的开放世界物体检测框架 背景介绍 随着生态系统监测的重要性不断提升,野生动植物及植物群体的监测已成为生态保护和农业发展的关键手段。这些监测工作包括估算种群数量、识别物种、研究物种行为以及分析植物病害或多样性。然而,传统的封闭世界物体检测模型通常训练于已标注的单一物种数据,难以泛化到新的物种分类。 当前的生态系统研究在数据和方法上存在诸多挑战,特别是标注数据的不足以及模型对新物种的适应能力有限。基于此,来自美国伊利诺伊大学香槟分校的 Garvita Allabadi、Ana Lucic、Yu-Xiong Wang 和 Vikram Adve 提出了一种面向开放世界的物体检测框架,利用视觉基础模型 Segment Anything Model(SAM),在无需标注新物...

面向医学图像分割的模型异质半监督联邦学习

面向医学图像分割的模型异质半监督联邦学习

医学影像分割的模型异质半监督联邦学习 背景介绍 医学图像分割在临床诊断中具有至关重要的作用,它帮助医生识别和分析病情。然而,该任务通常面临敏感数据、隐私问题及昂贵的标注费用等挑战。尽管当前研究主要聚焦于个性化协作训练医学分割系统,但忽视了获取分割标注是耗时且费力的。如何在保持本地模型个性化的同时平衡标注成本和分割性能,已成为研究的一个重要方向。因此,本研究引入了一种新颖的模型异质半监督联邦学习框架。 论文来源 这篇论文题为“Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation”,由Yuxi Ma、Jiacheng Wang、Jing Yang和Liansheng Wang共同...

半监督超声视频中的甲状腺结节检测

半监督超声视频中的甲状腺结节检测

半监督超声视频中甲状腺结节检测的研究报告 研究背景 甲状腺结节是常见的甲状腺疾病,甲状腺结节的早期筛查和诊断通常依赖于超声检查,超声检查是一种常见的无创检测方法,可用于检测包括甲状腺结节、乳腺癌和动脉斑块在内的多种疾病。然而,由于甲状腺结节在超声图像中的分辨率低、病变形态不规则且复杂等原因,超声检查高度依赖放射科医生的经验,误诊和漏诊时有发生,特别是在欠发达地区和国家更为常见。因此,开发基于计算机辅助诊断(Computer-Aided Diagnosis,CAD)的自动化精准方法显得尤为重要。 近年来,深度学习技术被引入到超声图像的计算机辅助诊断中。尽管现有的甲状腺结节检测方法在静态超声图像上取得了一些进展,但这些方法未能充分利用诊断过程中随时间变化的空间和时间信息。在临床筛查和诊断过程中,...

半监督医学图像分割的双重监督网络

半监督医学图像分割的双重监督网络

研究背景和动机 医学图像分割在解剖结构和病变区域的图像分析以及临床诊断中具有重要意义。然而,现有的全监督学习方法依赖于大量标注数据,而医学图像的像素级标注数据获取成本高昂且耗时。为了减轻对标注数据的依赖,半监督学习(SSL)方法逐渐兴起。尽管现有的SSL方法如mean teacher(MT)框架已经取得了不错的效果,但仍然存在诸多局限性。因此,本研究提出了一种双向监督网络(bilateral supervision network,BSNet),以更好地利用无标注的样本,从而提高半监督医学图像分割的性能。 文章来源 本文由Along He、Tao Li、Juncheng Yan、Kai Wang和Huazhu Fu撰写。作者分别来自天津大学网络与数据安全技术重点实验室、南开大学计算机学院、H...