基于边界回归和结构重参数化的细胞核实例分割模型RepsNet

基于边界回归和结构重参数化的细胞核实例分割模型RepsNet

基于边界回归与结构重参数化的细胞核实例分割模型RepsNet 学术背景 病理诊断是肿瘤诊断的金标准,而细胞核实例分割是数字病理分析和病理诊断中的关键步骤。然而,模型的计算效率和处理重叠目标的能力是当前研究中的主要挑战。为了解决这些问题,本文提出了一种基于细胞核边界回归和结构重参数化的神经网络模型RepsNet,用于在H&E染色的组织病理学图像中进行细胞核的分割和分类。 细胞核的分布和形态特征(如密度、核质比、平均大小和多形性)不仅对评估癌症分级有用,还能预测治疗效果。然而,病理图像通常具有细胞核广泛粘连、种类多样、形状多变以及细胞质背景与细胞核前景对比度低等特点,这些特征使得细胞核实例分割变得极为困难。 论文来源 本文由Shengchun Xiong、Xiangru Li、Yunpeng Z...