基于CNN与扩张采样自注意力和特征交互Transformer的ABVS乳腺肿瘤分割

基于CNN与Dilated Sampling Self-Attention的ABVS乳腺肿瘤分割研究 学术背景 乳腺癌是全球范围内第二大常见癌症,早期和准确的检测对于改善患者预后和降低死亡率至关重要。尽管目前有多种成像技术(如X线乳腺摄影、磁共振成像和手持超声)被用于乳腺癌的早期筛查,但这些技术往往面临分辨率有限或操作依赖性强等问题。为了解决这些问题,自动化乳腺容积扫描仪(Automated Breast Volume Scanner, ABVS)应运而生。ABVS能够自动获取整个乳房的全面视图,但其图像分析仍然具有挑战性,主要由于乳腺肿瘤在大小、形状和位置上的显著差异。近年来,深度学习在医学图像分析中取得了显著进展,尤其是卷积神经网络(CNN)和变换器(Transformer)在肿瘤分割和...