基于渐进式FastICA剥离法的在线表面肌电分解的双源验证

在线表面肌电信号分解的两源验证研究 学术背景 表面肌电信号(Surface Electromyogram, SEMG)是肌肉活动的重要表征,广泛应用于运动康复、机器人控制和人机交互等领域。然而,SEMG信号由于其低信噪比、高相似性和严重叠加的波形特征,分解难度较大。近年来,随着电子和传感技术的发展,高密度表面肌电信号(High-Density SEMG, HD SEMG)的采集成为可能,盲源分离技术(Blind Source Separation, BSS)如卷积核补偿(Convolution Kernel Compensation, CKC)和渐进式快速独立成分分析剥离(Progressive FastICA Peel-Off, PFP)等方法在SEMG分解中取得了显著进展。然而,现有的在...

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势 本论文由Harshavardhana T. Gowda(加利福尼亚大学戴维斯分校电子与计算机工程系)和Lee M. Miller(加利福尼亚大学戴维斯分校心理与脑科学中心、神经生理学和行为系、耳鼻喉科-头颈外科系)联合撰写。该论文发表于《Journal of Neural Engineering》。 研究背景 表面肌电图(sEMG)信号通过在皮肤表面放置传感器来非侵入性地记录来自运动单元(MU)激活的电信号。这些信号在上肢手势解码中的应用,对于截肢者的康复、人造肢体增强、计算机手势控制以及虚拟/增强现实等领域具有重要意义。然而,sEMG信号的实际应用受到了许多因素的限制,比如皮下组织的厚度、依赖于电极位置的信号变异性等。因此,如何解码和区分不...