基于事件相机的自监督快门复原方法

基于事件相机的自监督快门展开方法 研究背景与问题提出 在计算机视觉领域,从滚动快门(Rolling Shutter, RS)图像中恢复无失真的全局快门(Global Shutter, GS)视频一直是一个极具挑战性的问题。RS 相机由于逐行曝光机制,在动态场景中容易产生空间扭曲(如抖动和倾斜),这在高速运动场景中尤为明显。尽管现有的方法可以通过人工假设或特定数据集的特性来纠正 RS 效应,但这些方法往往在复杂非线性运动的真实场景中表现不佳。此外,许多方法依赖于合成数据集进行训练,导致在真实场景中性能下降,即所谓的“合成到真实”差距。 为了解决这些问题,本文作者提出了一种基于事件相机的自监督学习框架——SelfUnroll,旨在通过利用事件相机的高时间分辨率信息,实现从 RS 图像到连续时间 ...