基于受限学习网络和观察可信度推理的少样本退化建模
一种基于观测可信度推断的受限学习网络用于少样本退化建模 学术背景 在复杂工程系统中,多传感器广泛应用于监控设备的退化过程并预测其剩余使用寿命(Remaining Useful Life, RUL)。然而,在仅有少量样本的情况下,确保预测性能仍然具有挑战性。少样本场景下,传感器数据中的不一致观测(discordant observations)会引入大量不确定性,导致经验损失与预期损失相差甚远。此外,学习到的退化模型往往会在有限的可用样本上过拟合,导致模型参数分布偏差,从而限制模型在未见样本上的泛化能力。为了解决这些问题,本论文提出了一种基于观测可信度推断(Observation Credibility Inference, OCI)的受限学习网络,用于少样本退化建模。 该研究旨在开发一种适用...