动态注意视觉-语言Transformer网络在人员重新识别中的应用

动态注意力视觉语言Transformer网络用于行人再识别的研究报告 近年来,基于多模态的行人再识别(Person Re-Identification, ReID)技术在计算机视觉领域受到越来越多的关注。行人再识别旨在通过跨摄像机视角识别特定行人,是安全与监控应用(如寻找失踪人员、追踪犯罪分子)的关键技术。然而,多模态ReID技术融合视觉和文本信息时面临重大挑战,包括特征融合的偏差以及领域差异对模型性能的影响。 本文由Guifang Zhang、Shijun Tan、Zhe Ji和Yuming Fang等人撰写,来自江西财经大学计算与人工智能学院及纽卡斯尔大学纽卡斯尔商学院,发表于2024年《International Journal of Computer Vision》。研究提出了一种动...

基于样本相关性的深度人脸识别模型指纹检测

深度人脸识别中的模型盗用检测与保护:基于样本相关性的创新研究 背景与研究问题 近年来,深度学习技术的飞速发展显著推动了人脸识别领域的进步。然而,与此同时,商用的人脸识别模型正面临日益严峻的知识产权威胁——模型盗用攻击。模型盗用攻击允许攻击者通过对模型的黑盒或白盒访问,复制出功能等效的模型,从而规避模型所有者的检测。这种攻击不仅侵犯了模型所有者的知识产权,还可能危及商业利益和隐私安全。 为了应对这一挑战,模型指纹识别成为一种重要的盗用检测手段。传统方法主要依赖可迁移的对抗样本来生成模型指纹,但这些方法在面对对抗训练和迁移学习时表现出脆弱性。针对这一局限性,本文提出了一种基于样本相关性(Sample Correlation,SAC)的新型模型指纹识别方法,旨在提升模型盗用检测的鲁棒性和效率。 研...

AppTracker+:基于位移不确定性的多目标低帧率视频跟踪方法

低帧率多目标跟踪研究的学术报告 引言与研究背景 近年来,多目标跟踪(Multi-Object Tracking, MOT)技术在智能视频监控、自动驾驶及机器人视觉领域中得到了广泛应用。然而,传统MOT方法大多针对高帧率视频设计,在低帧率视频场景中面临显著挑战。低帧率下,相邻帧之间的目标位移增大,物体外观和可见性变化更加剧烈,这对检测结果的关联和轨迹保持提出了更高要求。由于边缘设备通常受到计算、存储和传输带宽限制,低帧率视频成为高效解决方案的重要选择,但其技术难题亟需解决。 本研究由来自浙江大学和香港科技大学的学者团队完成,发表于 *International Journal of Computer Vision*,题为“AppTracker+: Displacement Uncertaint...

日夜兼容的伪监督活动识别方法

研究亮点:基于伪监督和适应性音视频融合的低光照活动识别 学术背景 本文主要探讨在低光照环境中识别活动的挑战。现有的活动识别技术在光照充足的条件下表现优异,但面对低光照视频时却常常失效。这种局限性主要源于两个原因:一是缺乏带标注的低光照训练数据,二是低光照环境下视频的颜色对比度降低,导致视觉信息损失。此外,传统的基于视频图像增强的解决方案,尽管在一定程度上改善了图像质量,但常因引入颜色失真和视频帧不连续性等问题,对活动识别任务产生负面影响。 低光照活动识别在多个应用领域具有重要意义,包括智能家居、自主驾驶、安全监控以及野生动物观察等。因此,本文作者提出了一种新的方法,通过结合伪监督学习和自适应音视频融合技术,显著改善低光照环境下的活动识别性能。 研究来源 这项研究由University of ...

EfficientDeRain+: 基于RainMix增强的不确定性感知学习滤波的高效去雨

高效图像去雨方法:基于雨混合增强的高效深度去雨网络 背景介绍 降雨会对计算机视觉系统捕获的图像和视频质量产生显著影响,如雨滴和雨线会导致图像清晰度下降,进而影响行人检测、目标跟踪和语义分割等任务。为实现全天候视觉系统,图像去雨成为一个关键需求。然而,现有去雨方法通常基于雨模型的启发式假设,这种方法需要复杂的优化或迭代求解,从而导致计算开销大、实时性差。此外,这些假设往往无法涵盖真实雨景复杂多样的模式,制约了去雨质量。 为解决上述问题,本文提出了一种高效的图像去雨方法 EfficientDeRain+,通过将去雨问题建模为预测滤波问题,并设计了一系列创新技术,包括不确定性感知级联预测滤波、多尺度扩张滤波,以及数据增强方法 RainMix,显著提升了图像去雨的效率和质量。 论文来源 本文由来自新...

通过局部仿射共识的图聚类进行特征匹配

基于图聚类的特征匹配研究:局部仿射一致性的实现与应用 学术背景与研究动机 特征匹配是计算机视觉中的基础问题,在三维重建、图像检索、图像配准、SLAM(Simultaneous Localization and Mapping)等众多任务中扮演着重要角色。然而,在实际应用中,特征匹配经常受到噪声、外点(outliers)和多样图像变换的影响,使得构建准确的特征对应变得极为困难。当前基于图模型的特征匹配方法因其强大的结构表述能力在一定程度上缓解了这一问题,但仍然面临以下主要挑战: 1. 图匹配问题通常是NP难(NP-hard)问题,求解复杂度高。 2. 如何构建具有几何意义的图以描述特征点之间的关系仍然存在困难。 为了解决上述问题,本文提出了一种名为 GC-LAC(Graph Clusterin...

从目标到源:域自适应语义分割的新视角

关于领域自适应语义分割的新视角:T2S-DA研究 背景与研究意义 语义分割在计算机视觉领域中具有重要的应用,但其性能往往依赖于大量标注数据。然而,标注数据的获取成本极高,特别是在复杂场景中,为此,许多研究转向利用合成数据来缓解标注需求的问题。然而,由于领域间的差异性(domain gap),基于合成数据训练的模型难以泛化到真实场景中。这种情况下,无监督领域适应(Unsupervised Domain Adaptation, UDA)方法成为解决此问题的有效手段,其目标是从标注的源域(source domain)迁移知识到未标注的目标域(target domain)。 传统的UDA方法主要分为两类:对抗训练和自训练。对抗训练通过分布对齐来缩小领域间的差异,而自训练则利用目标域的伪标签进行直接监...

卷积神经网络中归因图可靠性的扰动评估方法

深度学习解释性研究:基于扰动的归因图评估方法 背景和研究动机 随着深度学习模型在各种任务中取得显著成功,人们越来越关注这些模型的解释性和透明性。然而,尽管模型在准确性上表现卓越,其决策过程的可解释性仍然存在很大不足。这种不足限制了模型在实际应用中的推广,因为许多场景需要模型不仅能提供准确的预测,还需具备鲁棒性、不确定性估计以及对决策过程的直观解释能力。 在计算机视觉领域,归因方法(Attribution Methods)被广泛应用于神经网络的解释性研究。这些方法通过生成归因图(Attribution Maps,AMs),显示输入图像中哪些区域对模型的决策贡献最大。然而,由于归因图的定性特性,如何定量评估这些图的有效性仍是一个未解决的问题。本研究旨在解决归因图评估中面临的可靠性和一致性问题,为...

基于Transformer的对象再识别综述

Transformer for Object Re-Identification: A Survey 背景与研究意义 对象重新识别(Object Re-Identification,简称Re-ID)是一项重要的计算机视觉任务,旨在跨时间和场景识别特定对象。这一领域在深度学习技术的推动下取得了显著进展,尤其是基于卷积神经网络(Convolutional Neural Networks,简称CNNs)的研究。然而,随着视觉Transformer的出现,Re-ID研究开启了新的篇章。本文综述了基于Transformer的Re-ID技术,分析其在图像/视频、少数据/少标注、多模态及特殊应用场景中的优势与挑战。 研究团队与发表信息 本文由来自武汉大学、Sun Yat-Sen University和In...

Pound–Drever–Hall前馈:超越反馈的激光相位噪声抑制

专题报道:Pound–Drever–Hall 前馈技术:超越反馈的激光相位噪声抑制 作者: Yu-Xin Chao, Zhen-Xing Hua, Xin-Hui Liang, Zong-Pei Yue, Li You, Meng Khoon Tey 机构: State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China 期刊: Optica 发表日期: 2024年7月9日 DOI链接: 点击这里 一、研究背景 在过去的几十年中,频率锁定到超稳光学参考腔的窄线宽激光器的出现,开创了引力波探测、光学钟、超低噪声光子微波生成、高保...