加重ネットワークのランダム化のためのシミュレーテッドアニーリングアルゴリズム
シミュレーテッドアニーリングアルゴリズムを用いた重み付きネットワークのランダム化研究 背景紹介 神経科学の分野において、コネクトミクス(connectomics) は、脳の神経ネットワークの構造と機能を研究する重要な分野です。現代のイメージング技術の発展により、研究者は生物学的に意義深いエッジ重み(edge weights) を大量に取得できるようになりました。これらの重み情報は、脳ネットワークの組織と機能を理解する上で極めて重要です。しかし、重み付きネットワーク分析がコネクトミクスで普及しているにもかかわらず、既存のネットワークランダム化モデルの多くはバイナリノード次数(binary node degree) のみを保持し、エッジ重みの重要性を無視しています。これにより、ネットワーク特徴の...