ターゲットからソースへの引き込み:ドメイン適応型セマンティックセグメンテーションの新しい視点

ドメイン適応セマンティックセグメンテーションにおける新たな視点:T2S-DAの研究 背景と研究の重要性 セマンティックセグメンテーションは、コンピュータビジョン分野において重要な応用を持つが、その性能は大量のアノテーションデータに依存することが多い。しかし、アノテーションデータの収集は特に複雑なシーンでは非常にコストが高いため、多くの研究がアノテーション要件を軽減するために合成データの利用に注目している。しかし、ドメイン間のギャップ(domain gap)の存在により、合成データで学習されたモデルが現実のシナリオに一般化するのは難しい。このような状況で、無教師ドメイン適応(Unsupervised Domain Adaptation, UDA)手法がこの問題を解決するための効果的なアプローチ...

睡眠段階分類のためのドメイン一般化を伴うマルチビュー時空間グラフ畳み込みネットワーク

睡眠段階分類は、睡眠の質の評価や疾病の診断において極めて重要です。しかし、既存の分類方法は時間変動する多チャンネル脳信号の空間および時間特徴の処理、個別の生体信号の違いへの対応、モデルの解釈可能性の点で多くの課題に直面しています。従来の機械学習方法は複雑な特徴工学に依存しており、深層学習方法は特徴の表現学習に優れているものの、空間-時間特徴の利用、個体間の一般化能力、モデルの解釈可能性においてまだ改善の余地があります。 これらの課題を解決するために、北京交通大学のZiyu Jiaらとマサチューセッツ工科大学のLi-Wei H. Lehmanは、多視角時空グラフ畳み込みネットワーク(Multi-View Spatial-Temporal Graph Convolutional Networks...