多視点非グラフデータにおける半教師あり学習のためのグラフ畳み込みネットワークの活用
背景紹介 機械学習の分野において、半教師あり学習(Semi-Supervised Learning, SSL)は、少量のラベル付きデータと大量のラベルなしデータを活用できるため、注目を集めています。特に、データのラベル付けコストが高いシナリオでは、グラフベースの半教師あり学習手法が研究の焦点となっています。グラフ畳み込みネットワーク(Graph Convolutional Networks, GCNs)は、半教師あり学習において優れた性能を発揮し、特に引用ネットワークやソーシャルネットワークなどのグラフ構造を持つデータにおいて顕著です。しかし、GCNsを非グラフ構造のマルチビューデータ(例えば画像コレクション)に適用する際には、まだ大きなギャップが存在します。 マルチビューデータ(Multi...