人物再識別のための動的注意ビジョン・言語トランスフォーマーネットワーク

動的注意機構を持つ視覚言語Transformerネットワークを用いた歩行者再識別に関する研究報告 近年、マルチモーダルベースの歩行者再識別(Person Re-Identification、以下ReID)はコンピュータビジョンの分野で注目を集めています。ReIDは、異なるカメラの視点間で特定の歩行者を識別することを目的としており、行方不明者の捜索や犯罪者の追跡といったセキュリティ・監視アプリケーションにおいて重要な役割を果たします。しかし、マルチモーダルReID技術では、視覚情報とテキスト情報を統合する際に大きな課題が存在し、特に特徴統合の偏りや、モデル性能に影響を与えるドメインギャップ(分布の違い)が問題となっています。 本研究は、江西財経大学コンピュータと人工知能学院およびニューカッスル...

バイオメトリクスデータの誤り訂正のための現代的な深層学習技術の再考

現代のディープラーニング技術における生体データのエラー訂正に関する再考 背景 情報技術の発展に伴い、生体データは認証や安全なデータ保管のための重要な要素として利用されています。従来の暗号技術は、均一分布で再現可能なランダム文字列に依存していましたが、指紋や虹彩スキャンのような生体データはそのような特性を備えておらず、生成・保管・取得に課題を抱えています。こうした課題に対処するため、生体データを暗号鍵の生成元として利用する生体認証暗号システム(biometric cryptosystems)が注目されています。しかし、生体データの変動性や外部要因(センサーのノイズなど)により、暗号鍵の正確な復元が困難となり、エラー訂正メカニズムが重要となります。 近年、ディープラーニング(DL)の進展により、...

RAFTに基づいたネットワークとデジタルビデオ安定化のための合成データセット

深層学習に基づくビデオ安定化方法の改良と合成データセットSynthStabに関する研究 背景紹介 デジタルビデオ安定化技術は、不要な振動やカメラの揺れをソフトウェアで取り除く技術であり、特にアマチュア動画撮影で広く利用されています。しかし、既存の深層学習ベースの直接変形(Direct Warping Stabilization、以下DWS)方法は、低品質の動画では効果を発揮するものの、大きな不安定性を伴う場合には限界があり、従来手法の安定性には達していません。この主な原因は、既存データセットでの安定動画の定義の曖昧さ、モデル構造の単純さ、将来フレームに関する予測情報の活用不足などにあります。 これらの問題を解決するため、本研究ではRAFT(Recurrent All-Pairs Field ...

MVTN:3D理解のためのマルチビュー変換の学習

MVTN:3D理解のためのマルチビュー変換の学習

マルチビュー変換ネットワーク(MVTN): 3D理解研究における新たな進展 背景と研究の動機 近年、コンピュータビジョン分野における3次元(3D)データの深層学習研究は、分類、セグメンテーション、検索タスクにおいて顕著な進展を遂げました。しかし、3D形状情報を効果的に活用する方法は依然として重要な課題です。一般的な3Dデータ表現方法には、点群(Point Clouds)、メッシュ(Meshes)、ボクセル(Voxels)があります。また、もう一つの人気のある手法として、3Dオブジェクトやシーンを複数の2次元(2D)ビューにレンダリングするマルチビュープロジェクション技術があります。この方法は、人間の視覚システムが取得する画像の流れにより近く、2D深層学習の先進成果を最大限に活用できます。 例...

オブジェクト再識別のためのトランスフォーマー:調査

オブジェクト再識別のためのTransformer: サーベイ 背景と研究の重要性 オブジェクト再識別(Object Re-Identification、以下Re-ID)は、特定のオブジェクトを異なる時間やシーンで識別する重要なコンピュータビジョンタスクです。本分野は、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)をベースとした深層学習技術により大きな進展を遂げました。しかし、視覚Transformerの登場により、Re-ID研究は新たな局面を迎えています。本研究では、Transformerを用いたRe-ID技術を体系的にレビューし、画像/ビデオ、少データ/少アノテーション、多モーダル、特殊な応用シナリオでの利点と課題を分析します。 研...

多組学データの統合による肺腺癌予後および免疫療法におけるエフェロサイトーシスの役割の解明

肺腺癌におけるアポトーシス死細胞除去特性とその予後および免疫療法との関連研究 背景および研究の動機 肺癌は、世界的に癌による死亡の主な原因であり、その中でも肺腺癌(Lung Adenocarcinoma, LUAD)は最も一般的な組織型です。疾患の潜行性や特異性の欠如により、多くの肺癌患者は進行期に診断され、従来の治療法(手術、放射線療法、化学療法)の効果は限られており、患者の全生存率は依然として低い状況です。近年、免疫療法、特に免疫チェックポイント阻害薬(Immune Checkpoint Inhibitors, ICIs)は、非小細胞肺癌(NSCLC)患者に希望をもたらしていますが、腫瘍微小環境(Tumor Microenvironment, TME)の免疫抑制効果によりその効果は制限さ...

縦断的MR画像における自己蒸留マスク画像変換器を使用した頸部リンパ節転移の自動セグメンテーション

縦断的MR画像における自己蒸留マスク画像変換器を使用した頸部リンパ節転移の自動セグメンテーション

自己蒸留型マスクされた画像トランスフォーマーの縦断MRIにおける可能性 - 頸部リンパ節転移の自動セグメンテーション 報告の紹介 放射線治療におけるがん腫の自動セグメンテーション技術は、スピードの向上と手作業によるリーダー間の差異の低減を約束するものです。放射線腫瘍学の臨床実践において、正確かつ迅速な腫瘍のセグメンテーションは、患者の個別化された治療において非常に重要です。Memorial Sloan Kettering Cancer Centerの研究者らによるこの研究は、マスクされた画像モデリングによるビジョントランスフォーマー (SMIT) アルゴリズムを用いて、経時的T2強調MRI画像における頭頸部扁平上皮がん患者の頸部リンパ節転移の自動セグメンテーション精度を実現・評価することを目...

歩行中の視覚のディープラーニングを用いた転倒リスク評価の強化

はじめに 転倒事故は複数の臨床群で一般的であり、通常のリスク評価には個人の歩行の視覚的観察が含まれます。しかし、歩行の観察評価は通常、転倒リスクを増加させる可能性のある欠陥を特定するために、実験室内で個人に標準化された歩行プロトコルテストを行うことに限定されており、微妙な欠陥は観察されにくい可能性があります。そのため、客観的な方法(例えば慣性計測ユニット、IMUs)は、高解像度の歩行特性を定量的に分析するのに有用であり、微妙な違いを捉えることで転倒リスク評価の情報量を向上させるのに役立ちます。しかし、IMUのみに依存した歩行の器械化分析には限界があり、参加者の行動や環境の詳細(例えば障害物)を考慮していません。ビデオアイトラッカーは、頭部と目の動きを記録することで、人々が頭部と目の動きに基づ...

対照的な自己監督学習による心エコー図からの効率的な深層学習ベースの自動診断

深層学習における超音波心動図自動診断の新たな突破:自己教師あり学習法の比較研究レポート 研究背景 人工知能と機械学習技術が急速に発展する中、それらは医用画像診断分野でますます重要な役割を果たしています。特に、自己教師あり学習(Self-Supervised Learning, SSL)は、ラベルデータが希少な問題に効果を発揮し、医用画像のラベル取得が困難かつ高価である場合に重要となります。通常、自己教師あり学習の多くの方法は、豊富な時間情報を含むビデオ画像、例えば超音波心動図に特別に適応・最適化されていません。したがって、小型のラベルデータセットでの自動医用画像診断の性能を向上させるために、超音波心動図ビデオに特化した自己教師あり対照学習法の開発が特に切迫し、重要です。 研究出典 本研究は、...

低級グリオーマ患者の全生存率予測のための有用な特徴の調査

低グレードグリオーマ患者の全生存率予測における有用な特徴の研究 学術的背景 グリオーマは脳内の腫瘍性成長であり、患者の生命を深刻に脅かすことが多い。大多数の場合、グリオーマは最終的に患者の死をもたらす。グリオーマの分析は通常、顕微鏡下で脳組織の病理切片を観察することを伴う。脳組織病理画像には患者の全生存率(OS, Overall Survival)を予測する大きな潜力があるが、脳組織病理の独特性により、これらの画像が唯一の予測因子として使用されることは稀である。病理画像を用いて早期のグリオーマ患者の全生存率を予測することは、治療と生活の質に重要な価値を持つ。この研究では、著者たちは深層学習モデルと簡単な記述データ(年齢やグリオーマの亜型など)を組み合わせて、低グレードグリオーマ(LGG, l...