少数の注釈付きピクセルとポイントクラウドに基づく運転シーンの弱教師ありセマンティックセグメンテーション

少量のピクセルラベルと点群データを用いた自動車運転シーンの弱教師ありセマンティックセグメンテーション 背景と研究課題 セマンティックセグメンテーションは、コンピュータビジョンにおける重要な課題の一つであり、自動運転などの分野で広く応用されています。しかし、従来の完全教師ありセグメンテーション手法では、大量のピクセル単位のアノテーションが必要であり、そのコストは非常に高いです。 弱教師ありセグメンテーション(Weakly Supervised Semantic Segmentation、WSSS)は、ラベル付きデータが少ない状況で高精度なセグメンテーションを実現することを目的とし、画像ラベルやバウンディングボックス、点レベルのラベルなどの粗いアノテーションを利用して、ピクセル単位のセグメンテー...

手順認識に向けた弱教師あり協調手順整列フレームワークの研究

弱教師あり協調手順整列フレームワーク:手順動画の相関学習への応用と評価 近年、動画分析分野の急速な発展に伴い、指示動画はその目的指向の特性と人間の学習プロセスとの内在的な関連性により、研究者の関心を集めています。一般動画と比較して、指示動画には複数の細かな手順が含まれ、これらの手順は異なる期間と時間的配置を持ち、より複雑な手順構造を形成します。本研究では、手順動画における手順認識型の相関学習を実現するために、弱教師あり協調手順整列(Collaborative Procedure Alignment, CPA)というフレームワークを提案しました。このフレームワークの主な特長は、高価な手順レベルのアノテーションに依存せず、動画間の内部相関性を利用して手順情報を協調的に抽出し、その手順一致性を定量...