バイオメトリクスデータの誤り訂正のための現代的な深層学習技術の再考
現代のディープラーニング技術における生体データのエラー訂正に関する再考 背景 情報技術の発展に伴い、生体データは認証や安全なデータ保管のための重要な要素として利用されています。従来の暗号技術は、均一分布で再現可能なランダム文字列に依存していましたが、指紋や虹彩スキャンのような生体データはそのような特性を備えておらず、生成・保管・取得に課題を抱えています。こうした課題に対処するため、生体データを暗号鍵の生成元として利用する生体認証暗号システム(biometric cryptosystems)が注目されています。しかし、生体データの変動性や外部要因(センサーのノイズなど)により、暗号鍵の正確な復元が困難となり、エラー訂正メカニズムが重要となります。 近年、ディープラーニング(DL)の進展により、...