FPGA上RNN加速用効率的CORDICベース活性化関数手法

RNNの効率的な活性化関数実現:CORDICアルゴリズムとFPGAハードウェア加速の革新 背景と研究の重要性 近年、ディープラーニング技術の急速な発展に伴い、特にリカレントニューラルネットワーク(Recurrent Neural Networks, RNNs)および長短期記憶ネットワーク(Long Short-Term Memory, LSTM)が、自然言語処理(Natural Language Processing, NLP)、音声認識、医療診断などの時間系列タスクにおいて強力な能力を発揮しています。しかし、畳み込みニューラルネットワーク(Convolutional Neural Networks, CNNs)と比較して、RNNモデルはその複雑性および非線形活性化関数の需要が多いため、計算...

事前訓練された言語モデルの抑制適応

InA: 事前学習言語モデルにおける抑制適応方法 事前学習言語モデル(Language Models, LMs)は自然言語処理(Natural Language Processing, NLP)タスクにおいて顕著な効果をあげている。しかし、従来のファインチューニング方法には冗長なパラメータの問題があり、効率と効果に影響を与えている。この挑戦に対応するために、本論文では抑制適応(Inhibition Adaptation, INA)と呼ばれるファインチューニング方法を提案し、追加される調整可能な重みを減らし、事前学習言語モデルからの知識を適切に再重み付けする。 研究の背景と問題 現在、事前学習言語モデルのファインチューニングはNLPの下流タスクを解決する一般的な方法である。しかし、古典的なファ...