CNNにおける帰属マップの信頼性評価:摂動ベースのアプローチ
深層学習の解釈可能性研究:摂動に基づく帰属マップ評価手法 背景と研究動機 深層学習モデルは多くのタスクで顕著な成功を収めていますが、これらのモデルの解釈可能性と透明性への関心が高まっています。特に、モデルの高精度な予測と同時に、その意思決定プロセスを人間が直感的に理解できるようにする能力が不足しています。この欠如は、多くの実世界のアプリケーションにおけるモデルの採用を制限しています。 コンピュータビジョン分野では、帰属法(Attribution Methods)が神経ネットワークの解釈可能性研究に広く利用されています。これらの方法は、入力画像中のどの領域がモデルの意思決定に最も寄与しているかを示す帰属マップ(Attribution Maps、AMs)を生成します。しかし、帰属マップの定性的性...