ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

全科診断意思決定に向けた知識グラフに基づく説明可能なパーソナライズド認知推論モデル 背景紹介 全科医学はコミュニティおよび家庭医療の重要な構成要素として、異なる年代、性別、臓器系統および各種疾患を包括します。その核心的な理念は、人を中心とし、家庭を単位とし、長期にわたる包括的な健康の維持と促進を強調することです。しかし、既存の証拠によると、中国の初級衛生保健(Primary Health Care, PHC)の質はまだ満足のいくレベルに達していません。臨床診断と治療の正確性に関して顕著な向上の余地があります。この問題に対応するために、人工知能に基づく意思決定ツールが徐々に全科医の疾患診断の強力な補助となっています。しかし、既存の研究は主に二つの問題を抱えています。一つは十分な拡張性と説明能力...

知識強化型グラフトピック変換機による説明可能な生物医学テキスト要約

知識強化型グラフトピック変圧器の説明可能な生物医学テキスト要約への応用 研究背景 生物医学の文献発表量が増加し続けているため、自動生物医学テキスト要約タスクの重要性が高まっています。2021年にはPubMedデータベースだけで1,767,637本の論文が発表されました。既存の事前学習言語モデル(Pre-trained Language Models、PLMs)を用いた要約方法は性能を向上させていますが、特定の分野の知識の捕捉や結果の説明可能性において顕著な制限があります。これにより、生成された要約が一貫性に欠け、冗長な文章や重要な分野知識の欠落を含む可能性があります。さらに、変圧器モデルのブラックボックス特性はユーザーが要約生成の理由や方法を理解するのを困難にするため、生物医学テキスト要約に...

モデルベース診断における重要な観察

このレポートでは、モデルベースの故障診断において、システムの異常の原因となる重要な観測データを特定する枠組みとアルゴリズムが紹介されています。この枠組みでは、元の観測データを「部分観測」に抽象化することで、診断結果に不可欠な観測を特定します。「重要な部分観測」とは、最大限に抽象化した後でも、元の観測と同じ最小診断集合を導出できる最小のものと定義されています。 この研究は、オーストラリア科学産業研究機構のデータ61センターのCody James Christopherと、フランス原子力・代替エネルギー庁のAlban Grastienの2人の著者によって行われ、2024年の人工知能ジャーナルに掲載されました。 研究者たちは最初に、モデルベース診断の基本的な枠組みと概念を説明しています。この枠組み...