忘れに強い知識トレーシングのためのディープグラフメモリネットワーク
忘却に対するロバストな知識追跡のための深層グラフメモリネットワーク 近年、個別学習の重要な方法として知識追跡(KT)が広く注目を集めている。知識追跡は、学生が新しい問題に回答する際の正答率を予測することを目的とし、彼らの過去の問題の回答履歴を利用して知識状態を推定するものである。しかし、現在の知識追跡方法は、忘却行動のモデリングや潜在概念間の関係の識別といった課題に直面している。これらの課題を解決するために、本論文では、新しい知識追跡モデルである深層グラフメモリネットワーク(Deep Graph Memory Network, DGMN)を提案する。本論文では、DGMNモデルの設計、実験過程、および各種データセットにおける性能を具体的に概要する。 研究の背景 知識追跡問題は提案されて以来、教...