条件付きタンパク質拡散モデルにより、活性が強化された人工プログラム可能エンドヌクレアーゼ配列を生成

条件付きタンパク質拡散モデルにより、活性が強化された人工プログラム可能エンドヌクレアーゼ配列を生成

深層学習を活用したタンパク質設計:条件付き拡散モデルによる機能的タンパク質配列の生成 タンパク質は生命科学研究および応用の中心的要素であり、その多様性と機能の複雑性は科学者に無限の可能性を提供します。深層学習技術の発展により、タンパク質設計は新たな高みに到達しつつあります。上海交通大学やケンブリッジ大学など複数の機関の科学者が共同で発表した研究「A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity」は、「条件付きタンパク質拡散モデル」(Conditional Protein Diffusion Model、CPD...

タンパク質構造予測:課題、進展、そして研究パラダイムのシフト

タンパク質構造予測:課題、進歩、および研究パラダイムの変化 タンパク質構造予測は、生化学、医学、物理学、数学、コンピューターサイエンスなど多分野の研究者を引きつける重要な学際的研究課題です。研究者たちは同じ構造予測問題を解決するために様々な研究パラダイムを採用しています:生化学者と物理学者はタンパク質フォールディングの原理を解明しようとしています;数学者、特に統計学者は通常、与えられた目的配列のタンパク質構造の確率分布を仮定することから始め、最も可能性の高い構造を見つけます;一方、コンピューターサイエンティストはタンパク質構造予測を最適化問題として捉え、最低エネルギーを持つ構造コンフォメーションを見つけるか、予測構造と天然構造の間の差異を最小化しようとします。最近では、深層学習もタンパク質構...

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

グリオブラストーマ患者の総生存時間予測のための画像表現型と遺伝子型のディープラーニング

世界的に見て、悪性脳腫瘍の中で最も一般的で致命的なのは膠芽腫(Glioblastoma, GBM)です。近年、機械学習技術を通じて術前の単一モダリティまたは多モダリティの画像表現型に基づいてGBM患者の総生存時間(Overall Survival, OS)を予測しようとする研究が続けられています。これらの機械学習方法は予測において一定の進展を遂げましたが、多くの研究では放射線学に基づくOS予測方法に含まれる腫瘍の遺伝子型情報を考慮しておらず、この情報は予後に強い指示作用を持っています。この問題を解決するために、Tang Zhenyu、Xu Yuyun、Jin Lei などの研究者が2020年6月に《IEEE Transactions on Medical Imaging》に「Deep Lea...

ディープラーニングモデルによるセマンティック飽和のメカニズムの解明

ディープラーニングモデルによるセマンティック飽和のメカニズムの解明

ディープラーニングモデルが意味飽和メカニズムを解明 意味飽和(semantic satiation)は、ある単語やフレーズが何度も繰り返されることでその意味が失われる現象であり、よく知られた心理学的現象です。しかし、このメカニズムを引き起こす微視的な神経計算の原理は依然として未知です。本稿では、連続結合ニューラルネットワーク(continuous coupled neural network, CCNN)を使用してディープラーニングモデルを構築し、意味飽和のメカニズムを研究し、ニューロンの成分でこのプロセスを正確に記述します。研究結果は、中観的な視点から見ると、意味飽和は自下から上へのプロセスである可能性があり、既存のマクロな心理学研究が意味飽和を自上から下へのプロセスと見なしているのとは異...

AutoAlign: 大規模言語モデルによる完全自動かつ効果的な知識グラフのアライメント

AutoAlign:大規模言語モデルによる全自動・効率的な知識グラフのアライメント方法 知識グラフ(Knowledge Graph、KG)は、質問応答システム、対話システム、推薦システムなど多くの分野で広く利用されています。しかし、異なる知識グラフには、同一の現実のエンティティが異なる形で保存される問題があるため、知識の共有と情報の補完が非常に困難です。特に実際のアプリケーションでは、これらの知識グラフの統合が中心的な課題となります。これにはエンティティアライメント(Entity Alignment)が関与しており、異なる知識グラフで同じエンティティを表すエンティティを識別することになります。しかし、既存の方法は通常手作業の種子アライメント(Seed Alignments)が必要で、その取得...

忘れに強い知識トレーシングのためのディープグラフメモリネットワーク

忘れに強い知識トレーシングのためのディープグラフメモリネットワーク

忘却に対するロバストな知識追跡のための深層グラフメモリネットワーク 近年、個別学習の重要な方法として知識追跡(KT)が広く注目を集めている。知識追跡は、学生が新しい問題に回答する際の正答率を予測することを目的とし、彼らの過去の問題の回答履歴を利用して知識状態を推定するものである。しかし、現在の知識追跡方法は、忘却行動のモデリングや潜在概念間の関係の識別といった課題に直面している。これらの課題を解決するために、本論文では、新しい知識追跡モデルである深層グラフメモリネットワーク(Deep Graph Memory Network, DGMN)を提案する。本論文では、DGMNモデルの設計、実験過程、および各種データセットにおける性能を具体的に概要する。 研究の背景 知識追跡問題は提案されて以来、教...

3D MRI の分類のためのシャム輸送ドメイン適応フレームワーク: グリオーマおよびアルツハイマー病

Siamese-Transport領域適応フレームワークに基づく3D MRIによる膠芽腫およびアルツハイマー病の分類 研究背景 コンピュータ支援診断において、3D磁気共鳴画像法(MRI)によるスクリーニングは早期診断に重要な役割を果たし、さまざまな脳疾患の悪化を防止するのに有効です。膠芽腫は一般的な悪性脳腫瘍で、その治療法は腫瘍のグレードによって異なります。そのため、正確で効率的な3D MRI分類は医用画像分析において極めて重要です。しかし、従来の深層学習モデルは臨床における未ラベルデータに適用された場合、異なる装置やデータ収集パラメータの違いによる領域間不一致性のため、性能が著しく低下します。既存の方法は主に領域間の差異を減少させることに焦点を当てていますが、セマンティック特徴と領域情報の...

DeepSleepNet: 生の単一チャネルEEGに基づく自動睡眠段階スコアリングモデル

深度睡眠ネットワーク:シングルチャネルEEGに基づく自動睡眠ステージスコアリングモデル 背景紹介 睡眠は人体の健康に重要な影響を持ち、人々の睡眠の質を監視することは医学研究および実践において極めて重要です。通常、睡眠専門家は複数の生理信号(脳波図 (EEG)、眼電図 (EOG)、筋電図 (EMG)、心電図 (ECG) など)を分析することで睡眠ステージをスコアリングします。これらの信号は多導睡眠ポリグラフ (Polysomnogram, PSG) と呼ばれ、分類後に個人の睡眠状態を特定するために使用されます。しかし、この手動方法は時間がかかり、労力が必要であり、専門家が複数の夜に渡って複数のセンサーを記録し分析する必要があります。 複数の信号(EEG、EOG、EMG など)やシングルチャネル...

生のEEGを用いたリアルタイム視覚学習者識別のためのディープラーニングベースの評価モデル

在今日の教育環境において、学生の学習スタイルを理解することは、彼らの学習効率を向上させるために極めて重要です。特に視覚学習スタイル(visual learning style)の識別は、教師と学生が教育と学習の過程でより効果的な戦略を取るのに役立ちます。現在、視覚学習スタイルを自動的に識別する主な方法は、脳波(Electroencephalogram, EEG)と機械学習技術に依存しています。しかし、これらの技術は通常、アーティファクトの除去および特徴抽出のためにオフライン処理が必要であり、そのためリアルタイムでの適用が制限されています。 この研究は、Soyiba Jawed、Ibrahima Faye、およびAamir Saeed Malikが《IEEE Transactions on N...

トランスフォーマーベースのアプローチによるディープラーニングネットワークと時空間情報を組み合わせた生EEG分類

研究背景及目的 近年では、脳-コンピュータインタフェース(Brain-Computer Interface、BCI)システムが神経工学および神経科学の分野で広く応用され、脳波(Electroencephalogram、EEG)は中枢神経系の異なるニューロン集団の活動を反映するデータツールとして、これらの分野で重要な研究テーマとなっています。しかし、EEG信号は低空間分解能、高時間分解能、低信号対雑音比、および個体差が大きいという特徴があり、信号処理および正確な分類において大きな課題となっています。特に運動想像(Motor Imagery、MI)というEEG-BCIシステムの一般的なパラダイムにおいて、異なるMIタスクのEEG信号を正確に分類することは、BCIシステムの機能回復およびリハビリテ...