神経形態ハードウェアにおけるニューロコンピュータープリミティブを使用した逆運動学の学習

神経形態ハードウェアにおける脳に倣った計算原理を用いた学習逆運動学 背景と研究動機 現代のロボティクスの分野では、自律的な人工エージェントの低遅延神経形態処理システムを実現することに大きな可能性がある。しかし現在のハードウェアは変動性と低精度があり、そのためその安定性と信頼性を確保することが厳しい課題となっている。これらの課題に対処するため、研究者たちは脳にインスパイアされた計算原理(computational primitives)を利用しています。例えば、三重スパイクタイミング依存プラスティシティ(triplet spike-timing dependent plasticity)、基底核に基づく脱抑制メカニズムおよび協力競技ネットワークなどを運動制御に応用しています。 本研究では、混合...